scholarly journals Chronic Exposure to HIV-Derived Protein Tat Impairs Endothelial Function via Indirect Alteration in Fat Mass and Nox1-Mediated Mechanisms in Mice

2021 ◽  
Vol 22 (20) ◽  
pp. 10977
Author(s):  
Laszlo Kovacs ◽  
Thiago Bruder-Nascimento ◽  
Lindsey Greene ◽  
Simone Kennard ◽  
Eric J. Belin de Chantemèle

People living with human immunodeficiency virus (HIV) (PLWH) have increased risk for atherosclerosis-related cardiovascular disease (CVD), the main cause of death in this population. Notwithstanding, the mechanisms of HIV-associated vascular pathogenesis are not fully elucidated. Therefore, we sought to determine whether HIV-regulatory protein Tat mediates HIV-induced endothelial dysfunction via NADPH oxidase 1 (Nox1)-dependent mechanisms. Body weight, fat mass, leptin levels, expression of reactive oxygen species (ROS)-producing enzymes and vascular function were assessed in C57BL/6 male mice treated with Tat for 3 days and 4 weeks. Aortic rings and human endothelial cells were also treated with Tat for 2–24 h in ex vivo and in vitro settings. Chronic (4 weeks) but not acute (3 days and 2–24 h) treatment with Tat decreased body weight, fat mass, and leptin levels and increased the expression of Nox1 and its coactivator NADPH oxidase Activator 1 (NoxA1). This was associated with impaired endothelium-dependent vasorelaxation. Importantly, specific inhibition of Nox1 with GKT771 and chronic leptin infusion restored endothelial function in Tat-treated mice. These data rule out direct effects of HIV-Tat on endothelial function and imply the contribution of reductions in adipose mass and leptin production which likely explain upregulated expression of Nox1 and NoxA1. The Nox1 and leptin system may provide potential targets to improve vascular function in HIV infection-associated CVD.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Han ◽  
Huaquan Wang ◽  
Zonghong Shao

Background. The myelodysplastic syndrome (MDS) comprises a group of clonal hematopoietic stem cell diseases characterized by cytopenia, dysplasia in one or more of the major myeloid lineages, ineffective hematopoiesis, and increased risk of development of acute myeloid leukemia (AML). Macrophages are innate immune cells that ingest and degrade abnormal cells, debris, and foreign material and orchestrate inflammatory processes. We analyzed the role of macrophages from MDS patients in vitro. Methods. Macrophages were induced from peripheral blood of patients with MDS via granulocyte macrophage colony-stimulating factor (GM-CSF). Phagocytic capacity of macrophages was measured with carboxyfluorescein succinimidyl ester and fluorescent microspheres. CD206 and signal regulatory protein alpha (SIRPα) on macrophages were detected by flow cytometry. Inducible nitric oxide synthase (iNOS) was measured by ELISA method. Results. Compared with normal control group, the number of monocytes increased in MDS patients. However, the monocytes showed impaired ability to induce macrophages and the number of macrophages induced from MDS samples was lower. Further, we demonstrated that the ex vivo phagocytic function of macrophages from MDS patients was impaired and levels of reorganization receptors CD206 and SIRPα were lower. Levels of iNOS secreted by macrophages in MDS were increased. Conclusions. Monocyte-derived macrophages are impaired in myelodysplastic syndromes.


2021 ◽  
pp. 00234-2021
Author(s):  
Padraig Hawkins ◽  
Thomas McEnery ◽  
Claudie Gabillard-Lefort ◽  
David A Bergin ◽  
Bader Alfawaz ◽  
...  

Oxidative stress from innate immune cells is a driving mechanism that underlies COPD pathogenesis. Individuals with alpha-1 antitrypsin (AAT) deficiency (AATD) have a dramatically increased risk of developing COPD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil NADPH-oxidase activation, due to the specific lack of plasma AAT. Experiments were performed using circulating neutrophils isolated from healthy controls and individuals with AATD. Superoxide anion (O2−) production was determined from the rate of reduction of cytochrome c. Quantification of membrane NADPH-oxidase subunits was performed by mass spectrometry and western blot analysis. The clinical significance of our in vitro findings were assessed in patients with AATD and severe COPD receiving intravenous AAT replacement therapy. In vitro, AAT significantly inhibited O2− production by stimulated neutrophils and suppressed receptor stimulation of cyclic adenosimonophosphate (cAMP) and extracellular-signal regulated kinase (ERK)1/2 phosphorylation. In addition, AAT reduced plasma membrane translocation of cytosolic phox components of the NADPH-oxidase. Ex vivo, AATD neutrophils demonstrated increased plasma membrane associated p67phox and p47phox and significantly increased O2− production. The described variance in phox protein membrane assembly was resolved post AAT augmentation therapy in vivo, the effects of which significantly reduced AATD neutrophil O2− production to that of healthy control cells. These results expand our knowledge on the mechanism of neutrophil driven airways disease associated with AATD. Therapeutic AAT augmentation modified neutrophil NADPH-oxidase assembly and ROS production, with implications for clinical use in conditions in which oxidative stress plays a pathogenic role.


2019 ◽  
Vol 41 (26) ◽  
pp. 2472-2483 ◽  
Author(s):  
Marin Kuntic ◽  
Matthias Oelze ◽  
Sebastian Steven ◽  
Swenja Kröller-Schön ◽  
Paul Stamm ◽  
...  

Abstract Aims Electronic (e)-cigarettes have been marketed as a ‘healthy’ alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. Methods and results Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. Conclusions E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5522-5522
Author(s):  
Yu Han ◽  
Huaquan Wang ◽  
Zonghong Shao

Abstract The myelodysplastic syndrome (MDS) comprises a group of clonal hematopoietic stem cell diseases characterized by cytopenia, dysplasia in one or more of the major myeloid lineages, ineffective hematopoiesis, and increased risk of development of acute myeloid leukemia (AML). Macrophages are innate immune cells that ingest and degrade abnormal cells, debris, and foreign material and orchestrate inflammatory processes. Tumor-associated macrophages (TAMs) play an important role in the pathophysiology of human malignancies. They support growth of cancer cells by promoting angiogenesis, inhibiting tumor cell apoptosis and anti-tumor immune reactions. In this study, we analyzed the role of macrophages from MDS patients in vitro. Macrophages were induced from peripheral blood of patients with MDS via granulocyte macrophage colony-stimulating factor (GM-CSF). Compared with that in the normal control group, the number of monocytes increased in MDS patients. However, the monocytes showed impaired ability to induce macrophages and the number of macrophages induced from MDS samples was lower. Further, we demonstrated that the ex vivo phagocytic function of macrophages from MDS patients was impaired and levels of reorganization receptors CD206 and signal regulatory protein alpha (SIRPα) were lower. Levels of inducible nitric oxide synthase(iNOS) secreted by macrophages in MDS were increased. In conclusion, monocyte-derived macrophages are impaired in myelodysplastic syndromes. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 78 (04) ◽  
pp. 1173-1177 ◽  
Author(s):  
Jacek Musiał ◽  
Jakub Swadźba ◽  
Miłosz Jankowski ◽  
Marek Grzywacz ◽  
Stanisława Bazan-Socha ◽  
...  

SummaryAntiphospholipid-protein antibodies (APA) include lupus-type anticoagulant (LA) and antibodies recognizing complexes of anionic phospholipids (e.g. cardiolipin) and proteins (e.g. prothrombin and (β2-glycoprotein I). The presence of APA is associated with an increased risk of both arterial and venous thrombosis. However, the pathogenic mechanism leading to thrombosis in patients with APA remains unclear. We studied 32 patients with systemic lupus erythematosus (SLE) who were divided into two groups depending on the presence (n = 19) or absence (n = 13) of APA. Healthy volunteers (n = 12) matched by age and sex served as controls. In all subjects LA and IgG class anticardiolipin antibodies (ACA) were determined. Thrombin generation was monitored ex vivo measuring fibrinopeptide A (FPA) and prothrombin fragment F1 + 2 (F1 + 2) in blood emerging from a skin microvasculature injury, collected at 30 second intervals. In subjects with antiphospholipid antibodies mean FPA and F1 + 2 concentrations were signiF1cantly higher at most blood sampling times than in controls. In some SLE patients with APA the process of thrombin generation was clearly disturbed and very high concentrations of F1brinopeptide A were detected already in the F1rst samples collected. Two minutes after skin incision SLE patients without APA produced slightly more FPA, but not F1 + 2, as compared to healthy subjects. Mathematical model applied to analyze the thrombin generation kinetics revealed that APA patients generated signiF1cantly greater amounts of thrombin than healthy controls (p = 0.02 for either marker). In contrast, in the same patients generation of thrombin in recalciF1ed plasma in vitro was delayed pointing to the role of endothelium in the phenomenon studied. In summary, these data show for the F1rst time that in SLE patients with antiphospholipid-protein antibodies thrombin generation after small blood vessel injury is markedly increased. Enhanced thrombin generation might explain thrombotic tendency observed in these patients.


Author(s):  
Bruno Ramalho de Carvalho ◽  
Geórgia Fontes Cintra ◽  
Taise Moura Franceschi ◽  
Íris de Oliveira Cabral ◽  
Leandro Santos de Araújo Resende ◽  
...  

AbstractWe report a case of ultrasound-guided ex vivo oocyte retrieval for fertility preservation in a woman with bilateral borderline ovarian tumor, for whom conventional transvaginal oocyte retrieval was deemed unsafe because of the increased risk of malignant cell spillage. Ovarian stimulation with gonadotropins was performed. Surgery was scheduled according to the ovarian response to exogenous gonadotropic stimulation; oophorectomized specimens were obtained by laparoscopy, and oocyte retrieval was performed ∼ 37 hours after the ovulatory trigger. The sum of 20 ovarian follicles were aspirated, and 16 oocytes were obtained. We performed vitrification of 12 metaphase II oocytes and 3 oocytes matured in vitro. Our result emphasizes the viability of ex vivo mature oocyte retrieval after controlled ovarian stimulation for those with high risk of malignant dissemination by conventional approach.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanyan Wu ◽  
Yan Borné ◽  
Rui Gao ◽  
Maykel López Rodriguez ◽  
William C. Roell ◽  
...  

AbstractThe hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04–1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09–1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.


2020 ◽  
Vol 98 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Mihaela Ionica ◽  
Oana M. Aburel ◽  
Adrian Vaduva ◽  
Alexandra Petrus ◽  
Sonia Rațiu ◽  
...  

Obesity is an age-independent, lifestyle-triggered, pandemic disease associated with both endothelial and visceral adipose tissue (VAT) dysfunction leading to cardiometabolic complications mediated via increased oxidative stress and persistent chronic inflammation. The purpose of the present study was to assess the oxidative stress in VAT and vascular samples and the effect of in vitro administration of vitamin D. VAT and mesenteric artery branches were harvested during abdominal surgery performed on patients referred for general surgery (n = 30) that were randomized into two subgroups: nonobese and obese. Serum levels of C-reactive protein (CRP) and vitamin D were measured. Tissue samples were treated or not with the active form of vitamin D: 1,25(OH)2D3 (100 nmol/L, 12 h). The main findings are that in obese patients, (i) a low vitamin D status was associated with increased inflammatory markers and reactive oxygen species generation in VAT and vascular samples and (ii) in vitro incubation with vitamin D alleviated oxidative stress in VAT and vascular preparations and also improved the vascular function. We report here that the serum level of vitamin D is inversely correlated with the magnitude of oxidative stress in the adipose tissue. Ex vivo treatment with active vitamin D mitigated obesity-related oxidative stress.


2020 ◽  
Vol 15 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Hossein Mahmoudvand ◽  
Mahbobeh Pakravanan ◽  
Farnaz Kheirandish ◽  
Sareh Jahanbakhsh ◽  
Maryam Sepahvand ◽  
...  

Background: The present work aimed to evaluate the chemical composition of Curcuma zadoaria essential oil and to investigate its efficacy and safety against hydatid cyst protoscoleces. Methods: Collected protoscoleces from liver fertile hydatid cysts of infected sheep were exposed to different concentrations of the essential oil (75, 150, 300 μl/mL) for 5-30 min in vitro and ex vivo. Then, by using the eosin exclusion assay, the viability of protoscoleces was studied. In the next step, 24 male NMRI mice were examined to assess the toxicity of C. zadoaria essential oil by measuring the biochemical and hematological parameters. Results: Based on the obtained results, the LD50 value of intraperitoneal injection of the C. zadoaria essential oil was 1.76 mL/kg of body weight and the maximum non-fatal dose was 0.96 mL/kg of body weight. C. zadoaria essential oil had a strong proto scolicidal activity in vitro so that at the 300 and 150 μl/ml entirely eliminates the parasite after 5 and 10 minutes; whereas, weak proto scolicidal activity was observed at lower doses. Ex vivo assay, no similar effect with in vitro was observed, therefore, more time is required to show a potent proto scolicidal activity. C. zadoaria essential oil at the concentrations of 300 and 150 μl/mL after an exposure time of 7 and 12 min, killed 100% of protoscoleces within the hydatid cyst, respectively. After intraperitoneal injection of the C. zadoaria essential oil for 2 weeks, no significant difference (p > 0.05) was observed in the clinical chemistry and hematologic parameters at the doses of 0.15, 0.3, 0.6 mL/kg. Conclusion: The obtained results in vitro and ex vivo exhibited that C. zadoaria essential oil had a favorable proto scolicidal activity on hydatid cyst protoscoleces. However, more supplementary works are required to verify these findings by assessing clinical subjects.


2019 ◽  
Vol 317 (6) ◽  
pp. H1292-H1300 ◽  
Author(s):  
Young-Rae Kim ◽  
Julia S. Jacobs ◽  
Qiuxia Li ◽  
Ravinder Reddy Gaddam ◽  
Ajit Vikram ◽  
...  

SUMOylation is a posttranslational modification of lysine residues. Modification of proteins by small ubiquitin-like modifiers (SUMO)1, -2, and -3 can achieve varied, and often unique, physiological and pathological effects. We looked for SUMO2-specific effects on vascular endothelial function. SUMO2 expression was upregulated in the aortic endothelium of hypercholesterolemic low-density lipoprotein receptor-deficient mice and was responsible for impairment of endothelium-dependent vasorelaxation in these mice. Moreover, overexpression of SUMO2 in aortas ex vivo, in cultured endothelial cells, and transgenically in the endothelium of mice increased vascular oxidative stress and impaired endothelium-dependent vasorelaxation. Conversely, inhibition of SUMO2 impaired physiological endothelium-dependent vasorelaxation in normocholesterolemic mice. These findings indicate that while endogenous SUMO2 is important in maintenance of normal endothelium-dependent vascular function, its upregulation impairs vascular homeostasis and contributes to hypercholesterolemia-induced endothelial dysfunction. NEW & NOTEWORTHY Sumoylation is known to impair vascular function; however, the role of specific SUMOs in the regulation of vascular function is not known. Using multiple complementary approaches, we show that hyper-SUMO2ylation impairs vascular endothelial function and increases vascular oxidative stress, whereas endogenous SUMO2 is essential for maintenance of normal physiological function of the vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document