scholarly journals Identification of a Novel Mutation of β-Spectrin in Hereditary Spherocytosis Using Whole Exome Sequencing

2021 ◽  
Vol 22 (20) ◽  
pp. 11007
Author(s):  
Dżamila M. Bogusławska ◽  
Michał Skulski ◽  
Beata Machnicka ◽  
Stanisław Potoczek ◽  
Sebastian Kraszewski ◽  
...  

Hereditary spherocytosis (HS), the most commonly inherited hemolytic anemia in northern Europeans, comprises a group of diseases whose heterogeneous genetic basis results in a variable clinical presentation. High-throughput genome sequencing methods have made a leading contribution to the recent progress in research on and diagnostics of inherited diseases and inspired us to apply whole exome sequencing (WES) to identify potential mutations in HS. The data presented here reveal a novel mutation probably responsible for HS in a single Polish family. Patients with clinical evidence of HS (clinical symptoms, hematological data, and EMA test) were enrolled in the study. The examination of the resulting WES data showed a number of polymorphisms in 71 genes associated with known erythrocyte pathologies (including membranopathies, enzymopathies, and hemoglobinopathies). Only a single SPTB gene variant indicated the possible molecular mechanism of the disease in the studied family. The new missense mutation p.C183Y was identified using WES in the SPTB gene, which is most likely the cause of clinical symptoms typical of hereditary spherocytosis (membranopathy) due to structural and functional impairments of human β-spectrin. This mutation allows for a better understanding of the molecular mechanism(s) of one of the membranopathies, hereditary spherocytosis.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yahya Benbouchta ◽  
Imane Cherkaoui Jaouad ◽  
Habiba Tazi ◽  
Hamza Elorch ◽  
Mouna Ouhenach ◽  
...  

Abstract Background Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, noninflammatory bilateral corneal diseases that are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths in the cornea. Clinical symptoms revealed bilateral multiple superficial, epithelial, and stromal anterior granular opacities in different stages of severity among three patients of this family. A total of 99 genes are involved in CDs. The aim of this study was to identify pathogenic variants causing atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with severely different stages of evolution. Case presentation In this study, we report a large Moroccan family with CD. Whole-exome sequencing (WES) was performed in the three affected members who shared a phenotype of corneal dystrophy in different stages of severity. Variant validation and familial segregation were performed by Sanger sequencing in affected sisters and mothers and in two unaffected brothers. Whole-exome sequencing showed a novel heterozygous mutation (c.1772C > A; p.Ser591Tyr) in the TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities in different stages of severity among three patients in this family. Conclusions This report describes a novel mutation in the TGFBI gene found in three family members affected by different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy; therefore, it could be considered a novel phenotype genotype correlation, which will help in genetic counselling for this family.


2020 ◽  
Author(s):  
Yahya BENBOUCHTA ◽  
Imane CHERKAOUI JAOUAD ◽  
Habiba TAZI ◽  
Hamza ELORCH ◽  
Mouna OUHENACH ◽  
...  

Abstract Background: Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, non-inflammatory bilateral corneal diseases which are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths of the cornea. Clinical symptoms revealed bilaterally multiple superficial, epithelial, and stromal anterior granular opacities, in different stages of severity among three patients of this family. 99 genes are involved in CDs.The aim of this study is to identify pathogenic variant caused atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with their severe different stages of evolution.Methods: In this study, we report a large Moroccan family with CD. Whole Exome Sequencing (WES) was performed in the three affected members who shared a phenotype of a corneal dystrophy in different stages of severity. De variant validation and familial segregation were done by Sanger sequencing in affected sister and mothers and in two unaffected brothers.Results: Whole exome sequencing showed a novel heterozygous mutation (c.1772C>A; p.Ser591Tyr) in TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities; in different stages of severity among three patients of this family. Conclusions: This report presents a novel mutation in TGFBI gene, found in three family members affected with different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy and therefore, it could be considered as a novel phenotype genotype correlation, which will help in genetic counseling for this family


2020 ◽  
Author(s):  
Yahya BENBOUCHTA ◽  
Imane CHERKAOUI ◽  
Habiba TAZI ◽  
Hamza ELORCH ◽  
Mouna OUHENACH ◽  
...  

Abstract Background: Corneal dystrophy (CDs) is a heterogeneous group disease, genetically determined non-inflammatory bilateral corneal diseases (usually limited to the cornea). CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths of the cornea. Clinical symptoms revealed bilaterally multiple superficial, epithelial, and stromal anterior granular opacities, in different stages of severity among three patients of this family. 99 genes are involved in (CDs).The aim of this study is to identify pathogenic variant caused atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with their severe different stages of evolution.Methods: In this study, we report a large Moroccan family with fourteen individuals affected by corneal dystrophy. Whole Exome Sequencing (WES) was performed in the propositus (IV-7) which had corneal pain since the age of 18, associated with a decrease in visual acuity with anterior epithelial and stromal corneal dystrophy, in the form of microvacuole and poorly individualized anterior opacities, with fuzzy edges and an unevenness of the epithelial layers taking the sawtooth appearance. The familial segregation was done by Sanger sequencingResults: Whole exome sequencing showed a novel heterozygous mutation (c.1772C>A; p.Ser591Tyr) in TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities; in different stages of severity among three patients of this family. Conclusions: This report presents a novel mutation in TGFBI gene, found in all family members affects with different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy and therefore, it could be considered as a novel phenotype genotype correlation, which will help in genetic counseling for this family


2020 ◽  
Author(s):  
Yahya BENBOUCHTA ◽  
Imane CHERKAOUI JAOUAD ◽  
Habiba TAZI ◽  
Hamza ELORCH ◽  
Mouna OUHENACH ◽  
...  

Abstract Background: Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, non-inflammatory bilateral corneal diseases which are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths of the cornea. Clinical symptoms revealed bilaterally multiple superficial, epithelial, and stromal anterior granular opacities, in different stages of severity among three patients of this family. 99 genes are involved in CDs.The aim of this study is to identify pathogenic variant caused atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with their severe different stages of evolution.Case presentation: In this study, we report a large Moroccan family with CD. Whole Exome Sequencing (WES) was performed in the three affected members who shared a phenotype of a corneal dystrophy in different stages of severity. The variant validation and familial segregation were done by Sanger sequencing in affected sister and mothers and in two unaffected brothers. Whole exome sequencing showed a novel heterozygous mutation (c.1772C>A; p.Ser591Tyr) in TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities; in different stages of severity among three patients of this family. Conclusions: This report presents a novel mutation in TGFBI gene, found in three family members affected with different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy and therefore, it could be considered as a novel phenotype genotype correlation, which will help in genetic counseling for this family


2020 ◽  
Author(s):  
Yahya BENBOUCHTA ◽  
Imane CHERKAOUI JAOUAD ◽  
Habiba TAZI ◽  
Hamza ELORCH ◽  
Mouna OUHENACH ◽  
...  

Abstract Background: Corneal dystrophies (CDs) are a heterogeneous group of bilateral, genetically determined, non-inflammatory bilateral corneal diseases which are usually limited to the cornea. CD is characterized by a large variability in the age of onset, evolution and visual impact and the accumulation of insoluble deposits at different depths of the cornea. Clinical symptoms revealed bilaterally multiple superficial, epithelial, and stromal anterior granular opacities, in different stages of severity among three patients of this family. 99 genes are involved in CDs.The aim of this study is to identify pathogenic variant caused atypical corneal dystrophy in a large Moroccan family and to describe the clinical phenotype with their severe different stages of evolution.Case presentation: In this study, we report a large Moroccan family with CD. Whole Exome Sequencing (WES) was performed in the three affected members who shared a phenotype of a corneal dystrophy in different stages of severity. The variant validation and familial segregation were done by Sanger sequencing in affected sister and mothers and in two unaffected brothers. Whole exome sequencing showed a novel heterozygous mutation (c.1772C>A; p.Ser591Tyr) in TGFBI gene. Clinical examinations demonstrated bilaterally multiple superficial, epithelial and stromal anterior granular opacities; in different stages of severity among three patients of this family. Conclusions: This report presents a novel mutation in TGFBI gene, found in three family members affected with different phenotypic aspects. This mutation is associated with Thiel-Behnke corneal dystrophy and therefore, it could be considered as a novel phenotype genotype correlation, which will help in genetic counseling for this family


2021 ◽  
Vol 22 ◽  
Author(s):  
Masoud Heidari ◽  
Hamid Gharshasbi ◽  
Alireza Isazadeh ◽  
Morteza Soleyman-Nejad ◽  
Mohammad Hossein Taskhiri ◽  
...  

Background:: Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective: The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods: Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results: In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion: In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.


Author(s):  
Qingwen Zhu ◽  
Yiwen Zhou ◽  
Jiayi Ding ◽  
Li Chen ◽  
Jia Liu ◽  
...  

Background: Spontaneous abortion is a common disease in obstetrics and reproduction. Objective: This study aimed to screen candidate pathogenic genes for spontaneous abortion using whole-exome sequencing. Methods: Genomic DNA was extracted from abortion tissues of spontaneous abortion patients and sequenced using the Illumina HiSeq2500 high-throughput sequencing platform. Whole exome sequencing was performed to select harmful mutations, including SNP and insertion and deletion sites, associated with spontaneous abortion. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and gene fusion analyses were performed. MUC3A and PDE4DIP were two novel mutation genes that were screened and verified by PCR in abortion tissues of patients. Results: A total of 83,633 SNPs and 13,635 Indel mutations were detected, of which 29172 SNPs and 3093 Indels were screened as harmful mutations. The 7 GO-BP, 4 GO-CC, 9 GO-MF progress, and 3 KEGG pathways were enriched in GO and KEGG pathway analyses. A total of 746 gene fusion mutations were obtained, involving 492 genes. MUC3A and PDE4DIP were used for PCR verification because of their high number of mutation sites in all samples. Conclusion: There are extensive SNPs and Indel mutations in the genome of spontaneous abortion tissues, and the effect of these gene mutations on spontaneous abortion needs further experimental verification.


Sign in / Sign up

Export Citation Format

Share Document