scholarly journals Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities

2021 ◽  
Vol 22 (21) ◽  
pp. 11401
Author(s):  
Ying Luo ◽  
Yuzhu Song

Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.

2013 ◽  
Vol 63 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Mohammed Afzal Azam ◽  
Loganathan Dharanya ◽  
Charu Chandrakant Mehta ◽  
Sumit Sachdeva

In the present study, a series of benzothiazol derivatives 3a-l containing pyrazolo[3,4-d]pyrimidine moiety at the second position were synthesized and characterized by analytical and spectral data. The compounds were tested for their in vitro antimicrobial activity. Compounds 1-(1,3-benzothiazol-2- yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3a), 1- (1,3-benzothiazol-2-yl)-4-(4-chlorophenyl)-3-methyl-1H-pyrazolo[ 3,4-d]pyrimidine (3d) and 1-(1,3-benzothiazol-2-yl)- 3-methyl-4-substituted phenyl-1H-pyrazolo[3,4-d]pyrimidines (3h-j) showed significant inhibitory activity against P. aeruginosa whereas compounds 1-(1,3-benzothiazol-2-yl)-4- (2-chlorophenyl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3b), 2-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin- 4-yl]phenol (3e), 1-(1,3-benzothiazol-2-yl)-4-(3,4-dimethoxyphenyl)- 3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3h), 4-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyri midin-4-yl]-N,N-dimethylaniline (3j) and 1-(1,3-benzothiazol- 2-yl)-3-methyl-4-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidine (3k) were found to be active against C. albicans. Some of these synthesized compounds were evaluated for their in vivo acute toxicity, analgesic, anti-inflammatory, and ulcerogenic actions. The tested compound 4-[1-(1,3-benzothiazol- 2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-N, N-dimethylaniline (3j) exhibited maximum analgesic and anti-inflammatory activities. Compounds 1-(1,3-benzothiazol- -2-yl)-3-methyl-4-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine (3i) and 3j showed a significant gastrointestinal protection compared to the standard drug diclofenac sodium.


Author(s):  
Asma D. Ambekari ◽  
Shrinivas K. Mohite

Series of novel substituted Synthesis of N-{[5-(substituted)-1,3,4-oxadiazole-2-yl] carbamothioyl} derivatives containing 1,3,4-oxadiazole moiety were synthesized by microwave as a green chemistry method and conventional method by using pyridine 3- carboxylic acid as a starting material. The structures of the synthesized compounds were characterized by physicochemical data, IR, Mass spectra and 1HNMR. All the newly synthesized compound screened for their antimicrobial and In-vivo and In-vitro Anti-inflammatory studies. Anti-inflammatory studies revealed that compound 4f showed significant in-vivo and in-vitro anti-inflammatory activity as well potent antimicrobial activity.


2020 ◽  
Vol 88 (4) ◽  
pp. 42
Author(s):  
Georg Voelcker

Although cyclophosphamide (CP) has been used successfully in the clinic for over 50 years, it has so far not been possible to elucidate the mechanism of action and to use it for improvement. This was not possible because the basis of the mechanism of action of CP, which was found by lucky coincidence, is apoptosis, the discovery of which was honored with the Nobel Prize only in 2002. Another reason was that results from cell culture experiments were used to elucidate the mechanism of action, ignoring the fact that in vivo metabolism differs from in vitro conditions. In vitro, toxic acrolein is formed during the formation of the cytotoxic metabolite phosphoreamidemustard (PAM), whereas in vivo proapoptotic hydroxypropanal (HPA) is formed. The CP metabolites formed in sequence 4-hydroxycyclophosphamide (OHCP) are the main cause of toxicity, aldophosphamide (ALDO) is the pharmacologically active metabolite and HPA amplifies the cytotoxic apoptosis initiated by DNA alkylation by PAM. It is shown that toxicity is drastically reduced but anti-tumor activity strongly increased by the formation of ALDO bypassing OHCP. Furthermore, it is shown that the anti-tumor activity against advanced solid P388 tumors that grow on CD2F1 mice is increased by orders of magnitude if DNA damage caused by a modified PAM is poorly repairable.


2012 ◽  
Vol 19 (11) ◽  
pp. 1784-1791 ◽  
Author(s):  
Abhigyan Som ◽  
Nicolás Navasa ◽  
Avital Percher ◽  
Richard W. Scott ◽  
Gregory N. Tew ◽  
...  

ABSTRACTA group of synthetic antimicrobial oligomers, inspired by naturally occurring antimicrobial peptides, were analyzed for the ability to modulate innate immune responses to Toll-like receptor (TLR) ligands. These synthetic mimics of antimicrobial peptides (SMAMPs) specifically reduced cytokine production in response toStaphylococcus aureusand theS. aureuscomponent lipoteichoic acid (LTA), a TLR2 agonist. Anti-inflammatory SMAMPs prevented the induction of tumor necrosis factor (TNF), interleukin 6 (IL-6), and IL-10 in response toS. aureusor LTA, but no other TLR2 ligands. We show that these SMAMPs bind specifically to LTAin vitroand prevent its interaction with TLR2. Importantly, the SMAMP greatly reduced the induction of TNF and IL-6in vivoin mice acutely infected withS. aureuswhile simultaneously reducing bacterial loads dramatically (4 log10). Thus, these SMAMPs can eliminate the damage induced by pathogen-associated molecular patterns (PAMPs) while simultaneously eliminating infectionin vivo. They are the first known SMAMPs to demonstrate anti-inflammatory and antibacterial activitiesin vivo.


2021 ◽  
Author(s):  
Qingquan Chen ◽  
Marleini Ilanga ◽  
Sabona B Simbassa ◽  
Bhagath Chirra ◽  
Kush N Shah ◽  
...  

Cystic Fibrosis (CF) is a common fatal genetic disease caused by mutations happened to cystic fibrosis transmembrane conductance regulator (CFTR) gene. Lungs of CF patients are often colonized or infected with microorganisms. Drug resistant bacterial infection has been problematic in cystic fibrosis patient. The chronic bacterial infections and concomitant airway inflammation could damage the lung and lead to respiratory failure. Several clinical trials have demonstrated that high-dose ibuprofen reduces the rate of pulmonary function decline in CF patients. This beneficial effect has been attributed to the anti-inflammatory properties of ibuprofen. Previously, we have confirmed that high-dose ibuprofen demonstrated antimicrobial activity against P. aeruginosa in in vitro and in vivo. However, no study has examined the antimicrobial effect of combining ibuprofen with standard-of-care (SoC) antimicrobials. Here, we evaluated possible synergistic activity of combinations of common nonsteroidal anti-inflammatory drugs (NSAIDs), namely, aspirin, naproxen, and ibuprofen, with commonly used antibiotics for CF patients. The drug combinations were screened against different CF clinical isolates. Drugs that demonstrated efficacy in the presence of ibuprofen were further verified synergistic effects between these antimicrobials and NSAIDs. Finally, the survival analysis of an P. aeruginosa murine infection model was used to demonstrate the efficacy of synergistic combination. Our results suggest that combinations of ibuprofen with commonly used antibiotics demonstrate synergistic antimicrobial activity against drug resistant, clinical bacterial strains in in vitro. The efficacy of combination ceftazidime and ibuprofen was demonstrated in in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5052-5052
Author(s):  
Isabella Iasenza ◽  
Meaghan Boileau ◽  
Andrea Neumann ◽  
Héloïse Frison ◽  
Mark D. Minden ◽  
...  

Acute myeloid leukemia (AML) is an aggressive form of blood cancer defined by the uncontrolled proliferation of immature myeloblast cells in the blood and bone marrow, leading to hematopoietic failure. The 5-year survival rate is 28% in patients aged 20 years and older and 64% in patients aged 19 years and younger (SEER 2019). A large portion of these patients succumb to the disease partially due to the chemo-resistant nature of leukemic stem cells (LSCs). Hence, novel therapies targeting unique LSC biology that spare hematopoietic stem cells (HSCs) are needed to eliminate and avoid reoccurrence of this disease. We had previously identified FDA-approved anti-inflammatory glucocorticoids mometasone, halcinonide, and budesonide as compounds that induce terminal differentiation of the LSC (CD34+CD38-) and progenitor cell (CD34+CD38+) populations to leukemic blast cells (CD15+CD34-) in refractory human AML (Laverdière & Boileau et al., Blood Can. J. 2018). Following the paradigm of successful differentiation treatment in AML (acute promyelocytic leukemia with all-trans retinoic acid), the effects and mechanism of action of the glucocorticoids on LSCs need to be further investigated for other AML subtypes. Furthermore, dexamethasone, a glucocorticoid currently used to successfully treat acute lymphoblastic leukemia (ALL), is being studied in a Phase II clinical trial for induction and post-remission chemotherapy in older patients with de novo or therapy-related AML (clinicalTrials.gov, NCT03609060). To identify the subtypes of AML that are sensitive to steroid-induced LSC differentiation, we began by screening a panel of cell lines (F36P, MOLM-13, Kasumi-6, Kasumi-1 and K562) and observed that only Kasumi-1, a pediatric leukemia carrying the t(8;21) mutation leading to the fused RUNX1-RUNX1T1 gene, was responsive to glucocorticoid treatment, although without differentiation. This is consistent with the finding of Simon et al. who observed a loss of bulk AML cells in RUNX1 AML samples following dexamethasone treatment (Simon et al., Clin Cancer Res. 2017). However, we observed expansion of bulk cells following differentiation of LSCs in primary AML, indicating different mechanisms of steroid response in different samples: differentiation of LSCs or overall loss of AML cells. We will further investigate these compounds in a panel of 10 genetically defined primary AML samples to classify which oncogenetic drivers or subtypes of AML are linked to sensitivity to the three glucocorticoids, including which drive cell death vs LSC differentiation. We will perform ex vivo and in vivo studies of the glucocorticoids to assess the extent of engraftment in treated versus DMSO treated samples. This additional data will be presented at the annual meeting. In addition, to explore the mechanism of action of these steroids in AML, we investigated the roles of the cytokines interleukin-3 (IL-3), interleukin-6 (IL-6), stem cell factor (SCF), granulocyte colony stimulating factor (GCSF), thrombopoietin (TPO) and FMS-like tyrosine kinase 3 ligand (FLT3L), used to culture AML, on the differentiation effects induced by the glucocorticoids. We observed that only FLT3L was required for the complete differentiation of LSCs. In summary, we have observed that the three glucocorticoid steroids (mometasone, halcinonide, and budesonide), as well as dexamethasone to a lesser extent, can induce two different responses in a sample-dependent manner: terminal differentiation of LSCs or overall cell loss. We have also observed that the differentiation response requires FLT3L for maturation of the AML cells. Our current studies involve in vivo and genomic assays to determine the effect on functional LSCs and the genetic markers of sensitivity and we will present these results. Disclosures Minden: Trillium Therapetuics: Other: licensing agreement.


2020 ◽  
Author(s):  
Elizabeth A. Lilly ◽  
Mélanie A. C. Ikeh ◽  
Paul L. Fidel ◽  
Mairi C. Noverr

AbstractOur laboratory recently reported that the EP4 receptor antagonist, L-161,982, had direct growth-inhibitory effects on Staphylococcus aureus in vitro and in vivo, reducing microbial burden and providing significant protection against lethality in models of S. aureus monomicrobial and polymicrobial intra-abdominal infection. This antimicrobial activity was observed with both methicillin-sensitive and methicillin-resistant S. aureus (MRSA), as well as other Gram-positive bacteria. The antimicrobial activity of L-161,982 was independent of EP4 receptor inhibitory activity. In this study, we investigated the mechanism of action (MOA) of L-161,982, which contains a sulfonamide functional group. However, results demonstrate L-161,982 does not affect folate synthesis (sulfonamide MOA), oxidative stress, or membrane permeability. Instead, our results suggest that the inhibitor works via effects on inhibition of the electron transport chain (ETC). Similar to other ETC inhibitors, L-161,982 exposure results in a small colony size variant phenotype and inhibition of pigmentation, as well as significantly reduced hemolytic activity, and ATP production. In addition, L-161,982 potentiated the antimicrobial activity of another ETC inhibitor and inhibition was partially rescued by supplementation with nutrients required for ETC auxotrophs. Taken together, these findings demonstrate that L-161,982 exerts antimicrobial activity against MRSA via inhibition the ETC, representing a new member of a potentially novel antimicrobial drug class.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1568
Author(s):  
Alaa S. Abd-El-Aziz ◽  
Maysun R. Benaaisha ◽  
Amani A. Abdelghani ◽  
Rabin Bissessur ◽  
Laila H. Abdel-Rahman ◽  
...  

Designing nanocarriers with actions directed at a specific organ or tissue is a very promising strategy since it can significantly reduce the toxicity of a bioactive drug. In this study, an organometallic dendrimer was used to synthesize a biocompatible drug delivery system by attaching aspirin to the periphery of the dendrimer. Our goal is to enhance the bioavailability and anticancer activity of aspirin and reduce its toxicity through successive generations of organoiron dendrimers. The biological activity of aspirin-based dendrimer complexes was evaluated. The result of antimicrobial activity of the synthesized dendrimers also demonstrated an increase in their antimicrobial activity with increased generation of the dendrimers for most types of microorganisms. This study reveals for the first time that organoiron dendrimers linked with aspirin exhibit an excellent Gram-negative activity comparable to the reference drug Gentamicin. All synthesized dendrimers were tested for their anticancer activity against breast cancer cell lines (MCF-7), hepatocellular cell lines (Hep-G2), and a non-cancer cell line, Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, Doxorubicin. Compounds G3-D9-Asp and G4-D12-Asp exhibited noticeable activity against both cell lines, both of which were more effective than aspirin itself. In addition, the in vivo anti-inflammatory activity and histopathology of swollen paws showed that the designed aspirin-based dendrimers displayed significant anti-inflammatory activity; however, G2-D6-Asp showed the best anti-inflammatory activity, which was more potent than the reference drug aspirin during the same period. Moreover, the coupling of aspirin to the periphery of organoiron dendrimers showed a significant reduction in the toxicity of aspirin on the stomach.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Jun Taek Oh ◽  
Cara Cassino ◽  
Raymond Schuch

ABSTRACTCF-301 (exebacase) is a recombinantly produced bacteriophage-derived lysin (cell wall hydrolase) and is the first agent of this class to enter clinical development in the United States for treating bacteremia including endocarditis due toStaphylococcus aureus. Whereas rapid bactericidal activity is the hallmarkin vitroandin vivoresponse to CF-301 at exposures higher than the MIC, prolonged antimicrobial activity, mediated by cell wall damage, is predicted at concentrations less than the MIC. In the current study, a series ofin vitropharmacodynamic parameters, including the postantibiotic effect (PAE), postantibiotic sub-MIC effect (PA-SME), and sub-MIC effect (SME), were studied to determine how short-duration and sub-MIC CF-301 exposures affect the growth of surviving staphylococci and extend its antimicrobial activity. Mean PAE, PA-SME, and SME values up to 4.8, 9.3, and 9.8 h, respectively, were observed against 14 staphylococcal strains tested in human serum; growth delays were extended by 6 h in the presence of daptomycin. Exposures to CF-301 at sub-MIC levels as low as 0.001× to 0.01× MIC (∼1 to 10 ng/ml) resulted in aberrant cell wall ultrastructure, increased membrane permeability, dissipation of membrane potential, and inhibition of virulence phenotypes, including agglutination and biofilm formation. A mouse thigh infection model designed to study the PAE was used to confirm our findings and demonstratein vivogrowth delays of ≥19.3 h. Our findings suggest that at CF-301 concentrations less than the MIC during therapeutic use, sustained reductions in bacterial fitness and virulence may substantially enhance efficacy.


2016 ◽  
Vol 64 (6) ◽  
pp. 558-563 ◽  
Author(s):  
Ekhlass Nassar ◽  
Yaser Abdel-Moemen El-Badry ◽  
Hagar El Kazaz

Sign in / Sign up

Export Citation Format

Share Document