scholarly journals The Complex Interplay between Autophagy and NLRP3 Inflammasome in Renal Diseases

2021 ◽  
Vol 22 (23) ◽  
pp. 12766
Author(s):  
Yong Ding ◽  
Xiaodi Fu ◽  
Qimeng Wang ◽  
Huiyang Liu ◽  
Honggang Wang ◽  
...  

Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and the circulation of degraded products. The dysfunction of autophagy can lead to the pathology of many human diseases. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and can induce caspase-1 activation, thus leading to the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. It has been reported that the interplay between autophagy and NLRP3 inflammasome is involved in many diseases, including renal diseases. In this review, the interplay between autophagy and the NLRP3 inflammasome and the mechanisms in renal diseases are explored to provide ideas for relevant basic research in the future.

Author(s):  
Shuangyu Lv ◽  
Honggang Wang ◽  
Xiaotian Li

Autophagy is an important and conserved cellular pathway in which cells transmit cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell composition synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome can induce the maturation and secretion of Interleukin-1 beta (IL-1β) and IL-18 by activating caspase-1. It is involved in many diseases. In recent years, the interplay between autophagy and NLRP3 inflammasome has been reported to contribute to many diseases including metabolic disorders related diseases. In this review, we summarized the recent studies on the interplay between autophagy and NLRP3 inflammasome in metabolic disorders to provide ideas for the relevant basic research in the future.


Author(s):  
Shuangyu Lv ◽  
Xiaotian Li ◽  
Honggang Wang

Endoplasmic reticulum (ER) is an important organelle for the protein synthesis, modification, folding, assembly, and the transport of new peptide chains. When the folding ability of ER proteins is impaired, the accumulation of unfolded or misfolded proteins in ER leads to endoplasmic reticulum stress (ERS). The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, can induce the maturation and secretion of interleukin-1beta (IL-1β) and IL-18 through activating caspase-1. It is associated with many diseases. Studies have shown that ERS can regulate NLRP3 inflammasome in many diseases including diabetes. However, the mechanism of the effects of ERS on NLRP3 inflammasome in diabetes has not been fully understood. This review summarizes the recent researches about the effects of ERS on NLRP3 inflammasome and the related mechanism in diabetes to provide ideas for the relevant basic research in the future.


2021 ◽  
Author(s):  
Masafumi Takahashi

Abstract Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study trial demonstrated that IL-1β-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.


Sign in / Sign up

Export Citation Format

Share Document