scholarly journals Human Gut Microbiota in Health and Selected Cancers

2021 ◽  
Vol 22 (24) ◽  
pp. 13440
Author(s):  
Aleksandra Sędzikowska ◽  
Leszek Szablewski

The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto’s thyroidis and Graves’ disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-13
Author(s):  
Julia Moor ◽  
Tsering Wüthrich ◽  
Suzanne Aebi ◽  
Nadezda Mostacci ◽  
Gudrun Overesch ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alexander Koliada ◽  
Vladislav Moseiko ◽  
Mariana Romanenko ◽  
Oleh Lushchak ◽  
Nadiia Kryzhanovska ◽  
...  

Abstract Background Evidence was previously provided for sex-related differences in the human gut microbiota composition, and sex-specific discrepancy in hormonal profiles was proposed as a main determinant of these differences. On the basis of these findings, the assumption was made on the role of microbiota in the sexual dimorphism of human diseases. To date, sex differences in fecal microbiota were demonstrated primarily at lower taxonomic levels, whereas phylum-level differences between sexes were reported in few studies only. In the present population-based cross-sectional research, sex differences in the phylum-level human gut microbiota composition were identified in a large (total n = 2301) sample of relatively healthy individuals from Ukraine. Results Relative abundances of Firmicutes and Actinobacteria, as determined by qRT-PCR, were found to be significantly increased, while that of Bacteroidetes was significantly decreased in females compared to males. The Firmicutes to Bacteroidetes (F/B) ratio was significantly increased in females compared to males. Females had 31 % higher odds of having F/B ratio more than 1 than males. This trend was evident in all age groups. The difference between sexes was even more pronounced in the elder individuals (50+): in this age group, female participants had 56 % higher odds of having F/B ratio > 1 than the male ones. Conclusions In conclusion, sex-specific differences in the phylum-level intestinal microbiota composition were observed in the Ukraine population. The F/B ratio was significantly increased in females compared to males. Further investigation is needed to draw strong conclusions regarding the mechanistic basis for sex-specific differences in the gut microbiota composition and regarding the role of these differences in the initiation and progression of human chronic diseases.


2017 ◽  
Vol 17 (2) ◽  
pp. 58-63 ◽  
Author(s):  
Chi Kit Au ◽  
Tin Lok Lai ◽  
Cheuk Wan Yim

AbstractMajority of rheumatic diseases are complex and multifactorial in etiology. Emerging studies has suggested that the change of human microbiota, especially in the gut, play a pivotal role in its pathogenesis. Dysequilibrium of the gut microbiota triggers the imbalance between pro- and anti- inflammatory immune responses and results in different rheumatic manifestations, such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). In this article, current and future role of the human gut microbiota in rheumatic diseases are discussed.


2015 ◽  
Vol 172 (4) ◽  
pp. R167-R177 ◽  
Author(s):  
Kristine H Allin ◽  
Trine Nielsen ◽  
Oluf Pedersen

Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysaccharides derived from the outer membranes of Gram-negative bacteria, bacterial fermentation of dietary fibres to short-chain fatty acids and bacterial modulation of bile acids. On top of this, an increased permeability of the intestinal epithelium may lead to increased absorption of macromolecules from the intestinal content resulting in systemic immune responses, low-grade inflammation and altered signalling pathways influencing lipid and glucose metabolism. While mechanistic studies on mice collectively support a causal role of the gut microbiota in metabolic diseases, the majority of studies in humans are correlative of nature and thus hinder causal inferences. Importantly, several factors known to influence the risk of type 2 diabetes, e.g. diet and age, have also been linked to alterations in the gut microbiota complicating the interpretation of correlative studies. However, based upon the available evidence, it is hypothesised that the gut microbiota may mediate or modulate the influence of lifestyle factors triggering development of type 2 diabetes. Thus, the aim of this review is to critically discuss the potential role of the gut microbiota in the pathophysiology and pathogenesis of type 2 diabetes.


2014 ◽  
Vol 155 (1) ◽  
pp. 801-809 ◽  
Author(s):  
Jakub P. Piwowarski ◽  
Sebastian Granica ◽  
Marta Zwierzyńska ◽  
Joanna Stefańska ◽  
Patrick Schopohl ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Mia C. Theilmann ◽  
Yong Jun Goh ◽  
Kristian Fog Nielsen ◽  
Todd R. Klaenhammer ◽  
Rodolphe Barrangou ◽  
...  

ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota.


2019 ◽  
Author(s):  
Simone Rampelli ◽  
Matteo Soverini ◽  
Federica D'Amico ◽  
Monica Barone ◽  
Teresa Tavella ◽  
...  

2000 ◽  
Vol 13 (2) ◽  
pp. 229-254 ◽  
Author(s):  
Toni Steer ◽  
Hollie Carpenter ◽  
Kieran Tuohy ◽  
Glenn R. Gibson

AbstractOne of the most topical areas of human nutrition is the role of the gut in health and disease. Specifically, this involves interactions between the resident microbiota and dietary ingredients that support their activities. Currently, it is accepted that the gut microflora contains pathogenic, benign and beneficial components. Some microbially induced disease states such as acute gastroenteritis and pseudomembranous colitis have a defined aetiological agent(s). Speculation on the role of microbiota components in disorders such as irritable bowel syndrome, bowel cancer, neonatal necrotising enterocolitis and ulcerative colitis are less well defined, but many studies are convincing. It is evident that the gut microflora composition can be altered through diet. Because of their perceived health-promoting status, bifidobacteria and lactobacilli are the commonest targets. Probiotics involve the use of live micro-organisms in food; prebiotics are carbohydrates selectively metabolized by desirable moieties of the indigenous flora; synbiotics combine the two approaches. Dietary intervention of the human gut microbiota is feasible and has been proven as efficacious in volunteer trials. The health bonuses of such approaches offer the potential to manage many gut disorders prophylactically. However, it is imperative that the best methodologies available are applied to this area of nutritional sciences. This will undoubtedly involve a genomic application to the research and is already under way through molecular tracking of microbiota changes to diet in controlled human trials.


Sign in / Sign up

Export Citation Format

Share Document