scholarly journals Three Component Composite Scaffolds Based on PCL, Hydroxyapatite, and L-Lysine Obtained in TIPS-SL: Bioactive Material for Bone Tissue Engineering

2021 ◽  
Vol 22 (24) ◽  
pp. 13589
Author(s):  
Aleksandra Korbut ◽  
Marcin Włodarczyk ◽  
Karolina Rudnicka ◽  
Aleksandra Szwed ◽  
Przemysław Płociński ◽  
...  

In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young’s modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.

2021 ◽  
Vol 22 (7) ◽  
pp. 3607
Author(s):  
Konrad Szustakiewicz ◽  
Marcin Włodarczyk ◽  
Małgorzata Gazińska ◽  
Karolina Rudnicka ◽  
Przemysław Płociński ◽  
...  

In this research, we prepared foam scaffolds based on poly(l-lactide) (PLLA) and apatite whiskers (HAP) using thermally induced phase separation technique supported by the salt leaching process (TIPS-SL). Using sodium chloride having a size of (a) 150–315 μm, (b) 315–400 μm, and (c) 500–600 μm, three types of foams with different pore sizes have been obtained. Internal structure of the obtained materials has been investigated using SEM as well as μCT. The materials have been studied by means of porosity, density, and compression tests. As the most promising, the composite prepared with salt size of 500–600 μm was prepared also with the l-lysine modified apatite. The osteoblast hFOB 1.19 cell response for the scaffolds was also investigated by means of cell viability, proliferation, adhesion/penetration, and biomineralization. Direct contact cytotoxicity assay showed the cytocompatibility of the scaffolds. All types of foam scaffolds containing HAP whiskers, regardless the pore size or l-lysine modification induced significant stimulatory effect on the cal-cium deposits formation in osteoblasts. The PLLA/HAP scaffolds modified with l-lysine stimulated hFOB 1.19 osteoblasts proliferation. Compared to the scaffolds with smaller pores (150–315 µm and 315–400 µm), the PLLA/HAP foams with large pores (500–600 µm) promoted more effective ad-hesion of osteoblasts to the surface of the biomaterial.


2019 ◽  
Vol 88 ◽  
pp. 149-150 ◽  
Author(s):  
Erkoseoglu Ilknur ◽  
Kadioglu Mine ◽  
Cavusoglu Irem ◽  
Sisman Mulkiye ◽  
Aran Turhan ◽  
...  

2020 ◽  
Author(s):  
Wenna Gao ◽  
Ruilin Zhu ◽  
liu yang

Background: Mounting evidence has suggested tumor necrosis factor-alpha (TNF-α) can promote the development of diabetic retinopathy (DR), and TNF-α gene variants may influence DR risk. However, the results are quite different. Objectives: To comprehensively address this issue, we performed the meta-analysis to evaluate the association of TNF-α-308 G/A and -238 G/A polymorphism with DR. Method: Data were retrieved in a systematic manner and analyzed using STATA Statistical Software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Allelic and genotypic comparisons between cases and controls were evaluated. Results: For the TNF-α-308 G/A polymorphism, overall analysis suggested a marginal association with DR [the OR(95%CI) of (GA versus GG), (GA + AA) versus GG, and (A versus G) are 1.21(1.04, 1.41), 1.20(1.03, 1.39), and 1.14(1.01, 1.30), respectively]. And the subgroup analysis indicated an enhanced association among the European population. For the TNF-α-238 G/A polymorphism, there was mild correlation in the entire group [the OR(95%CI) of (GA versus GG) is 1.55(1.14,2.11) ], which was strengthened among the Asian population. Conclusion: The meta-analysis suggested that -308 A and -238 A allele in TNF-α gene potentially increased DR risk and showed a discrepancy in different ethnicities.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098465
Author(s):  
Like Qian ◽  
Xi Yin ◽  
Jiahao Ji ◽  
Zhengli Chen ◽  
He Fang ◽  
...  

Background The role of tumor necrosis factor (TNF)-α small interfering (si)RNA alveolar epithelial cell (AEC)-targeting nanoparticles in lung injury is unclear. Methods Sixty C57BL/6J mice with sepsis were divided into normal, control, sham, 25 mg/kg, 50 mg/kg, and 100 mg/kg siRNA AEC-targeting nanoparticles groups (n = 10 per group). The wet:dry lung weight ratio, and hematoxylin and eosin staining, western blotting, and enzyme-linked immunosorbent assays for inflammatory factors were conducted to compare differences among groups. Results The wet:dry ratio was significantly lower in control and sham groups than other groups. TNF-α siRNA AEC-targeting nanoparticles significantly reduced the number of eosinophils, with significantly lower numbers in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. The nanoparticles also significantly reduced the expression of TNF-α, B-cell lymphoma-2, caspase 3, interleukin (IL)-1β, and IL-6, with TNF-α expression being significantly lower in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. Conclusion TNF-α siRNA AEC-targeting nanoparticles appear to be effective at improving lung injury-related sepsis, and 50 mg/kg may be a preferred dose option for administration.


2005 ◽  
Vol 60 (4) ◽  
pp. 471-475 ◽  
Author(s):  
Barbara Orzeszko ◽  
Tomasz Świtaj ◽  
Anna B. Jakubowska-Mućka ◽  
Witold Lasek ◽  
Andrzej Orzeszko ◽  
...  

Certain adamantylated heterocycles were previously shown to enhance the secretion of tumor necrosis factor alpha (TNF-α) by murine melanoma cells that have been transduced with the gene for human TNF-α and constitutively expressed this cytokine. The stimulatory potency of those compounds depended, among other factors, on the structure of the linker between the adamantyl residue and the heterocyclic core. In the present study, a series of (1-adamantyl)alkylsulfanyl derivatives of heterocyclic compounds was prepared by alkylation of the corresponding thioheterocyles. Of the novel adamantylalkylthio compounds tested in the aforementioned cell line, 2-(2-adamantan-1-ylethylsulfanyl)- 4-methyl-pyrimidine was found to be the most active


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 514
Author(s):  
Sullim Lee ◽  
Giang Do Hoang ◽  
Daeyoung Kim ◽  
Ho Sueb Song ◽  
Sungyoul Choi ◽  
...  

The skin is an important organ in the human body that protects the body from environmentally hazardous substances. Reactive oxygen species (ROS) cause inflammatory reactions and degradation of the extracellular matrix leading to skin aging and various cutaneous lesions. This study evaluated the potential of isoflavones isolated from Maclura tricuspidata fruit to prevent TNF-α-induced skin inflammation in normal human dermal fibroblasts (HDFs). It focused on alpinumisoflavone (AIF) that suppressed the accumulation of ROS and nitric oxide (NO) in tumor necrosis factor-alpha (TNF-α)-treated HDFs. AIF inhibited the TNF-α-induced increase in matrix metalloproteinase-1, decreased procollagen I α1, and suppressed pro-inflammatory mediators and pro-inflammatory cytokines, including NO synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and IL-8 that trigger inflammatory responses. AIF inhibited nuclear factor-κB and activating protein 1 mitogen-activated protein kinases that were increased by TNF-α stimulation. These results suggest that AIF may protect skin from aging and various cutaneous lesions.


2013 ◽  
Vol 87 (23) ◽  
pp. 12935-12948 ◽  
Author(s):  
Jie Zhang ◽  
Kezhen Wang ◽  
Shuai Wang ◽  
Chunfu Zheng

NF-κB plays central roles in regulation of diverse biological processes, including innate and adaptive immunity and inflammation. HSV-1 is the archetypal member of the alphaherpesviruses, with a large genome encoding over 80 viral proteins, many of which are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrated that the HSV-1 ICP0 protein, a viral E3 ubiquitin ligase, was shown to significantly suppress tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. ICP0 was demonstrated to bind to the NF-κB subunits p65 and p50 by coimmunoprecipitation analysis. ICP0 bound to the Rel homology domain (RHD) of p65. Fluorescence microscopy demonstrated that ICP0 abolished nuclear translocation of p65 upon TNF-α stimulation. Also, ICP0 degraded p50 via its E3 ubiquitin ligase activity. The RING finger (RF) domain mutant ICP0 (ICP0-RF) lost its ability to inhibit TNF-α-mediated NF-κB activation and p65 nuclear translocation and degrade p50. Notably, the RF domain of ICP0 was sufficient to interact with p50 and abolish NF-κB reporter gene activity. Here, it is for the first time shown that HSV-1 ICP0 interacts with p65 and p50, degrades p50 through the ubiquitin-proteasome pathway, and prevents NF-κB-dependent gene expression, which may contribute to immune evasion and pathogenesis of HSV-1.


Sign in / Sign up

Export Citation Format

Share Document