scholarly journals iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism of Golden-Yellow Leaf Mutant in Hybrid Paper Mulberry

2021 ◽  
Vol 23 (1) ◽  
pp. 127
Author(s):  
Fenfen Wang ◽  
Naizhi Chen ◽  
Shihua Shen

Plant growth and development relies on the conversion of light energy into chemical energy, which takes place in the leaves. Chlorophyll mutant variations are important for studying certain physiological processes, including chlorophyll metabolism, chloroplast biogenesis, and photosynthesis. To uncover the mechanisms of the golden-yellow phenotype of the hybrid paper mulberry plant, this study used physiological, cytological, and iTRAQ-based proteomic analyses to compare the green and golden-yellow leaves of hybrid paper mulberry. Physiological results showed that the mutants of hybrid paper mulberry showed golden-yellow leaves, reduced chlorophyll, and carotenoid content, and increased flavonoid content compared with wild-type plants. Cytological observations revealed defective chloroplasts in the mesophyll cells of the mutants. Results demonstrated that 4766 proteins were identified from the hybrid paper mulberry leaves, of which 168 proteins displayed differential accumulations between the green and mutant leaves. The differentially accumulated proteins were primarily involved in chlorophyll synthesis, carotenoid metabolism, and photosynthesis. In addition, differentially accumulated proteins are associated with ribosome pathways and could enable plants to adapt to environmental conditions by regulating the proteome to reduce the impact of chlorophyll reduction on growth and survival. Altogether, this study provides a better understanding of the formation mechanism of the golden-yellow leaf phenotype by combining proteomic approaches.

2021 ◽  
Author(s):  
Nianci Xie ◽  
Chenyu Zhang ◽  
Pinqian Zhou ◽  
Xizhi Gao ◽  
Shuanghong Tian ◽  
...  

Abstract Background Camellia sinensis ‘Yanlinghuayecha’ (YHC) is a variegated mutant developed recently in China. To dissect the physiological and molecular mechanisms of leaf variegation, we compared the leaf pigmentation, cellular ultrastructure, amino acid content, and transcriptome between the albino (A), mosaic (M), and green (G) sectors.Results The contents of photosynthetic pigments were significantly lower in sector A and higher in sector G than in sector M. Chloroplasts with well-organized thylakoids were found only in the mesophyll cells of the G sector but not in those of the A sector. The A sector had a significantly higher content of total and free amino acids. In particular, the levels of theanine, glutamate, and alanine in the A sector were higher than those in the G sector. Transcriptomics analysis showed that a total of 44,908 unique transcripts were identified. Comparing the differentially expressed genes (DEGs) in the three sectors, we conducted an in-depth study on chloroplast biogenesis, chlorophyll biosynthesis, and theanine synthesis pathways. The expression of CsPPOX in “porphyrin and chlorophyll metabolism” was significantly downregulated in the A sector. CsLHCB6 in “Photosynthesis - antenna proteins” and CsSCY1 in “Protein processing in endoplasmic reticulum”, both of which were associated with chloroplast biogenesis, were significantly downregulated in the A sector. The expression of CsTS1 was notably upregulated in the A sector.Conclusion Taken together, variegation alters the gene activities involved in chloroplast biogenesis, and our results suggest that leaf colour change in the A sector incorporates three aspects compared with that in the G sector: (1) Decreased CsPPOX expression slows the rate of chlorophyll synthesis, resulting in a decrease in chlorophyll content; (2) downregulated expression of CsLHCB6 and CsSCY1 inhibits chloroplast biogenesis, decreasing thylakoid morphogenesis and grana stacking; and (3) the metabolic flow of glutamate changes, possibly from chlorophyll biosynthesis to theanine biosynthesis. The accumulation of precursor synthetic substances and the high expression of CsTS1 generates a high theanine content. These analyses provide valuable insights into variegation in tea plants with regard to leaf colour change and L-theanine accumulation.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qian Wang ◽  
Baiyang Zhu ◽  
Congping Chen ◽  
Zhaodi Yuan ◽  
Jia Guo ◽  
...  

Abstract Background Tetrapyrroles play indispensable roles in various biological processes. In higher plants, glutamate 1-semialdehyde 2,1-aminomutase (GSAM) converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA), which is the rate-limiting step of tetrapyrrole biosynthesis. Up to now, GSAM genes have been successively identified from many species. Besides, it was found that GSAM could form a dimeric protein with itself by x-ray crystallography. However, no mutant of GSAM has been identified in monocotyledonous plants, and no experiment on interaction of GSAM protein with itself has been reported so far. Result We isolated a yellow leaf mutant, ys53, in rice (Oryza sativa). The mutant showed decreased photosynthetic pigment contents, suppressed chloroplast development, and reduced photosynthetic capacity. In consequence, its major agronomic traits were significantly affected. Map-based cloning revealed that the candidate gene was LOC_Os08g41990 encoding GSAM protein. In ys53 mutant, a single nucleotide substitution in this gene caused an amino acid change in the encoded protein, so its ALA-synthesis ability was significantly reduced and GSA was massively accumulated. Complementation assays suggested the mutant phenotype of ys53 could be rescued by introducing wild-type OsGSAM gene, confirming that the point mutation in OsGSAM is the cause of the mutant phenotype. OsGSAM is mainly expressed in green tissues, and its encoded protein is localized to chloroplast. qRT-PCR analysis indicated that the mutation of OsGSAM not only affected the expressions of tetrapyrrole biosynthetic genes, but also influenced those of photosynthetic genes in rice. In addition, the yeast two-hybrid experiment showed that OsGSAM protein could interact with itself, which could largely depend on the two specific regions containing the 81th–160th and the 321th–400th amino acid residues at its N- and C-terminals, respectively. Conclusions We successfully characterized rice GSAM gene by a yellow leaf mutant and map-based cloning approach. Meanwhile, we verified that OsGSAM protein could interact with itself mainly by means of the two specific regions of amino acid residues at its N- and C-terminals, respectively.


2012 ◽  
Vol 34 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Chao-Hui LIU ◽  
Xiao-Yan LI ◽  
Jian-Hui ZHANG ◽  
Dong-Zhi LIN ◽  
Yan-Jun DONG

2021 ◽  
Author(s):  
Sara I. Zandalinas ◽  
Soham Sengupta ◽  
Felix B. Fritschi ◽  
Rajeev K. Azad ◽  
Rachel Nechushtai ◽  
...  

2021 ◽  
Author(s):  
Reuben J Shaw ◽  
Sonja N Brun ◽  
Jan Lumibao ◽  
Allison Limpert ◽  
Huiyu Ren ◽  
...  

Amongst cancer subtypes, pancreatic ductal adenocarcinoma (PDA) has been demonstrated to be most sensitive to autophagy inhibition, which may be due to unique metabolic rewiring in these cells. The serine/threonine kinase ULK1 forms the catalytic center of a complex mediating the first biochemical step of autophagy. ULK1 directly recieves signals from mTORC1 and AMPK to trigger autophagy under stress and nutrient poor conditions. Studies in genetic engineered mouse models of cancer have revealed that deletion of core downstream autophagy genes (ATG5, ATG7) at the time of tumor iniation leads to a profound block in tumor progression leading to the development of autophagy inhibitors as cancer therapeutics. However, most preclinical studies and all clinical studies have relied on non-specific lysomotropic agents such as chloroquine and its derivatives, whose toxicity and off-target issues preclude further clinical development and which do not represent the impact of solely biochemically disrupting the autophagy pathway. Furthermore, druggable targets in the core autophagy pathway are quite limited, with ULK1 and ULK2 representing the only protein kinases in the pathway. Here we explore the genetic requirement for ULK1 and ULK2 in human PDA cancer cell lines and xenografts, and take advantage of new small molecule ULK1 inhibitors to demonstrate that ULK inhibition can overcome autophagy induction triggered by PDA therapeutics including chemotherapy and MEK inhibition. Finally we show that ULK inhibitors increase MHC Class I in PDA cells, suggestion a potential therapeutic avenue for such agents in combination with checkpoint immunotherapy.


1985 ◽  
Vol 63 (4) ◽  
pp. 711-715 ◽  
Author(s):  
R. Hodgins ◽  
R. B. van Huystee

The effect of chilling temperatures on the porphyrin pathway leading to chlorophyll was studied in Seneca Chief hybrid sweet corn. One-week-old seedlings grown at 28 °C in a 14 h light: 10 h dark photoperiod synthesize negligible amounts of chlorophyll when exposed to 12 °C for a subsequent 6 d. When the chilled plant is then brought back to 28 °C, chlorophyll synthesis is restored to control levels. Little difference in carotenoid content was detected between chill-stressed and control tissue even after 4 d of stress. Small differences in the chlorophyll content per 106 chloroplasts could be detected between stressed and control seedlings. Etiolated seedlings synthesize negligible amounts of chlorophyll or its precursors when illuminated at 12 °C. Incubation of tissue with aminolevulinic acid at various temperatures from 12 to 22 °C resulted in an accumulation of precursors comparable to 28 °C control tissue. The ability of etiolated tissue to accumulate aminolevulinic acid was negligible when illuminated at 12 °C as compared with that in tissue illuminated at 28 °C.


2018 ◽  
Vol 5 (1) ◽  
pp. 170759 ◽  
Author(s):  
Marcel Mohr ◽  
Dirk Hose ◽  
Anja Seckinger ◽  
Anna Marciniak-Czochra

Plasma cells (PCs) are the main antibody-producing cells in humans. They are long-lived so that specific antibodies against either pathogens or vaccines are produced for decades. PC longevity is attributed to specific areas within the bone marrow micro-environment, the so-called ‘niche’, providing the cells with required growth and survival factors. With antigen encounters, e.g. infection or vaccination, new PCs are generated and home to the bone marrow where they compete with resident PCs for the niche. We propose a parametrized mathematical model describing healthy PC dynamics in the bone marrow. The model accounts for competition for the niche between newly produced PCs owing to vaccination and resident PCs. Mathematical analysis and numerical simulations of the model allow explanation of the recovery of PC homoeostasis after a vaccine-induced perturbation, and the fraction of vaccine-specific PCs inside the niche. The model enables quantification of the niche-related dynamics of PCs, i.e. the duration of PC transition into the niche and the impact of different rates for PC transitions into and out of the niche on the observed cell dynamics. Ultimately, it provides a potential basis for further investigations in health and disease.


2020 ◽  
Author(s):  
Pingrong Wang ◽  
Fuliang Xiao ◽  
San Wang ◽  
Jia Guo ◽  
Qingsong Liu ◽  
...  

Abstract BackgroundThe ankyrin repeat (ANK) proteins are widely distributed in organisms ranging from viruses to plants, which play key roles in plastid differentiation, embryogenesis, chloroplast biogenesis and so on. However, only a few ANK genes have been identified in rice.ResultsIn this study, we isolated a yellow-green leaf mutant, 520ys, from japonica rice cultivar Nipponbare through ethyl methane sulfonate mutagenesis. The mutant exhibited a yellow-green leaf phenotype throughout the life cycle, arrested development of chloroplasts, reduced levels of photosynthetic pigments, and accumulated reactive oxide species. Map-based cloning suggested that the candidate gene was LOC_Os07g33660, which encodes an expressed protein containing one ankyrin repeat and showing sequence similarity with the Arabidopsis LTD/GDC1 (At1g50900). Transgenic complementation experiment confirmed that LOC_Os07g33660 is the causal gene for the mutant type of 520ys. 520YS (LOC_Os07g33660) is mainly expressed in green tissues and its encoded protein is targeted to the chloroplast. In 520ys mutant, expression levels of four light-harvesting chlorophyll a/b-binding protein translocation-related genes and eight photosynthesis-related genes were significantly down-regulated.ConclusionWe characterized a novel ANK gene, 520YS, which plays a key role in chloroplast development in rice.


Author(s):  
R. Gnanabai

This chapter describes how health is the most precious component for the happiness and all-round development of human being in the society. Alongside this, information is an important resource for individual growth and survival. Therefore, a Health Information System (HIS) is a system for collecting/processing of data from various sources, and using the information for policy-making and management of health services. This chapter discusses health literacy and its association with health information needs and health information literacy, the status of women in India and their influence in the well-being of the family, and the impact of HIS. This chapter also proves that with enough data obtained from the women of Kanyakumari District in India, the government's policy needs to be directed towards women for the success of its health-care programmes.


Sign in / Sign up

Export Citation Format

Share Document