scholarly journals Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus

2022 ◽  
Vol 23 (1) ◽  
pp. 524
Author(s):  
Sergey V. Kravchenko ◽  
Pavel A. Domnin ◽  
Sergei Y. Grishin ◽  
Alexander V. Panfilov ◽  
Viacheslav N. Azev ◽  
...  

The need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from Staphylococcus aureus. While the cell-penetrating peptide allows the peptide to enter the bacterial cell, the amyloidogenic site provides an antimicrobial effect by coaggregating with functional bacterial proteins. We have demonstrated the antimicrobial effects of the R23F, R23DI, and R23EI hybrid peptides against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus. R23F, R23DI, and R23EI can be used as antimicrobial peptides against Gram-positive and Gram-negative bacteria resistant to traditional antibiotics.

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
Francesco Buonocore ◽  
Anna Maria Fausto ◽  
Giulia Della Pelle ◽  
Tomislav Roncevic ◽  
Marco Gerdol ◽  
...  

Insects produce a large repertoire of antimicrobial peptides (AMPs) as the first line of defense against bacteria, viruses, fungi or parasites. These peptides are produced from a large precursor that contains a signal domain, which is cleaved in vivo to produce the mature protein with antimicrobial activity. At present, AMPs from insects include several families which can be classified as cecropins, ponericins, defensins, lebocins, drosocin, Metchnikowin, gloverins, diptericins and attacins according to their structure and/or function. This short review is focused on attacins, a class of glycine-rich peptides/proteins that have been first discovered in the cecropia moth (Hyalophora cecropia). They are a rather heterogeneous group of immunity-related proteins that exhibit an antimicrobial effect mainly against Gram-negative bacteria. Here, we discuss different attacin and attacin-like AMPs that have been discovered so far and analyze their structure and phylogeny. Special focus is given to the physiological importance and mechanism of action of attacins against microbial pathogens together with their potential pharmacological applications, emphasizing their roles as antimicrobials.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2011 ◽  
Vol 60 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Svetlana A. Ermolaeva ◽  
Alexander F. Varfolomeev ◽  
Marina Yu. Chernukha ◽  
Dmitry S. Yurov ◽  
Mikhail M. Vasiliev ◽  
...  

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-67
Author(s):  
Soheila Faramarz Isfahanian ◽  
◽  
Maryam Sadrnia ◽  
Sima Nasri ◽  
Hamid Sobhanian ◽  
...  

Objective: Zataria is one of the native plants of Iran which is widely used for the treatment of diseases among Iranians. In this study, we investigated the antimicrobial effects of Zataria essential oil on the skin bacteria in rats. Methods: Bacterial strains were isolated from the skin of 6 wistar rats and the antimicrobial effects of Zataria essential oil were evaluated by disk diffusion and microbroth dilution methods. In-vivo tests were performed to evaluate the antimicrobial effect of the essential oil by microbial culture as well as allergy tests on the skin of experimental rats compared to controls. Results: Three bacterial strains were isolated from the skin of rats identified as Staphylococcus aureus, Corynebacterium and Staphylococcus epidermidis. Minimum Growth Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for the two strains of Staphylococcus aureus and Corynebacterium were obtained 0.39 and 0.78 mg/ml, while for Staphylococcus epidermidis, they were 0.195 and 0.39 mg/ml, respectively. In-vivo test results showed the antibacterial effect of the essential oil on the skin bacteria and no inflammatory effects were observed under the allergy test. Conclusion: Zataria essential oil has antimicrobial effects on the skin infections in lower concentrations. The use of this essential oil as an antiseptic and preservative in cosmetics is recommended instead of chemical preservatives that generally have skin side effects.


2003 ◽  
Vol 71 (7) ◽  
pp. 3730-3739 ◽  
Author(s):  
Kazushige Midorikawa ◽  
Kazuhisa Ouhara ◽  
Hitoshi Komatsuzawa ◽  
Toshihisa Kawai ◽  
Sakuo Yamada ◽  
...  

ABSTRACT The antimicrobial peptides human β-defensin-1 (hBD1), hBD2, hBD3, and CAP18 expressed by keratinocytes have been implicated in mediation of the innate defense against bacterial infection. To gain insight into Staphylococcus aureus infection, the susceptibility of S. aureus, including methicillin-resistant S. aureus (MRSA), to these antimicrobial peptides was examined. Based on quantitative PCR, expression of hBD2 mRNA by human keratinocytes was significantly induced by contact with S. aureus, and expression of hBD3 and CAP18 mRNA was slightly induced, while hBD1 mRNA was constitutively expressed irrespective of the presence of S. aureus. Ten clinical S. aureus isolates, including five MRSA isolates, induced various levels of expression of hBD2, hBD3, and CAP18 mRNA by human kertinocytes. The activities of hBD3 and CAP18 against S. aureus were found to be greater than those of hBD1 and hBD2. A total of 44 S. aureus clinical isolates, including 22 MRSA strains, were tested for susceptibility to hBD3 and CAP18. Twelve (55%) and 13 (59%) of the MRSA strains exhibited more than 20% survival in the presence of hBD3 (1 μg/ml) and CAP18 (0.5 μg/ml), respectively. However, only three (13%) and two (9%) of the methicillin-sensitive S. aureus isolates exhibited more than 20% survival with hBD3 and CAP18, respectively, suggesting that MRSA is more resistant to these peptides. A synergistic antimicrobial effect between suboptimal doses of methicillin and either hBD3 or CAP18 was observed with 10 MRSA strains. Furthermore, of several genes associated with methicillin resistance, inactivation of the fmtC gene in MRSA strain COL increased susceptibility to the antimicrobial effect mediated by hBD3 or CAP18.


Author(s):  
Carlos Garin ◽  
Teresa Alejo ◽  
Vanesa Pérez Laguna ◽  
Martin Prieto ◽  
Gracia Mendoza ◽  
...  

Synergistic antimicrobial effects were observed for copper sulfide (CuS) nanoparticles together with indocyanine green (ICG) in the elimination of wild type pathogenic bacteria (Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa...


2021 ◽  
Vol 52 (2) ◽  
pp. 268-275
Author(s):  
Zaid K. Kamona ◽  
Amer H. H. Alzobaay

Lemongrass (Cymbopogon citratus) plant belongs to the Gramineae family. Lemongrass leaves essential oils were extracted by Clevenger method, antibacterial, MIC and MBC were evaluated against some gram positive and gram negative bacteria. Bacillus cereus, Staphylococcus aureus, and micrococcus spp., recorded high sensitivity to essential oil with inhibition zone reached (40, 32, and 28) mm respectively. While Pseudomonas spp., Salmonella typhimurium, and Escherichia coli recorded (20, 20, and 22) mm respectively. MIC and MBC values reached (3, 6.5) % respectively for gram-positive bacteria and (25,50) % respectively for gram-negative bacteria. C.citratus leaves essential oil showed superior efficiency in reduction count of total microorganisms, coliform bacteria, psychrotrophic bacteria, Staphylococcus aureus, and molds and yeasts, as well as the elongated shelf life for 15 days of fish balls treated with (5,10) µl\gram of essential oil under refrigerated storage compared with control treatment ( no oil added) which excluded for test after 6 days of refrigerated storage because microbial load and bad quality. Fish balls samples Lg10 (treated with 10µl\g of essential oil) gained best sensorial properties of color, texture, flavor, taste and overall acceptability were recorded 9/9 at the end of storage compared with treatment Lg5 (5µl\g essential oil added)  which gained acceptable sensorial score through refrigerated storage periods.


Author(s):  
Israa Ibrahim Khalil ◽  
Suhail Jawdat Fadihl ◽  
Haifaa Hussain Ali

Probiotic bacteria using in commercially produced foods are at most members of the genera Lactobacillus and Bifidobacterium. This research was aimed to study the antimicrobial effect of lactobacillus bacteria as probiotic against some pathogenic bacteria, strains of lactobacillus bacteria were isolated from two types of yoghurt in Baquba city, Iraq . Total of 60 yoghurt samples from 2 origins (30 locally and 30 commercial produced yoghurt) were used to isolate probiotic bacteria which were identified phenotypically and biochemically. 30 (100%) of locally produced yoghurt samples include with probiotic bacteria while 12 (40%) commercially types of yoghurt samples were contained with probiotic, the method of modified agar overlay was used to determine the antibacterial activity among the lactobacillus isolates. Results indicated spectrum of their antibacterial effects which were varied against the selected pathogenic bacterial isolates (Staphylococcus aureus and Escherichia.coli ). The results of this study encourage people to consume more probiotic dairy products instead of using antibiotic drugs as prophylactics which lead to health problems also encourage local industry for producing bioyoghurt products.  


2020 ◽  
Vol 51 (Special) ◽  
Author(s):  
Saleh & et al.

This study was aimed to extract the effective material from the dry nests of termites and detect its antibacterial activity against some pathogenic bacterial isolates and inhibit synthesis of its biofilm. Termites dry nests were collected and the effective material was extracted then the antibacterial activity was detected using the disc diffusion assay. Results were showed that the extract have antibacterial material from the Termites dry nests, this extract showed antibacterial activity against Gram positive bacteria (Staphylococcus aureus) at (21.5mm) and Gram negative bacteria ( Enterobacter sp. and Pseudomonas aeruginosa) at (26 mm and 20 mm) respectively by inhibiting their growth, as well as its effect on biofilm production of pathogenic bacteria. Staphylococcus aureus, Enterobacter sp. and Pseudomonas aeruginosa revealed a significant decrease (P<0.01) in biofilm synthesis as the concentration of the extract increased.


1999 ◽  
Vol 67 (8) ◽  
pp. 4106-4111 ◽  
Author(s):  
Olga Shamova ◽  
Kim A. Brogden ◽  
Chengquan Zhao ◽  
Tung Nguyen ◽  
Vladimir N. Kokryakov ◽  
...  

ABSTRACT We purified three proline-rich antimicrobial peptides from elastase-treated extracts of sheep and goat leukocytes and subjected two of them, OaBac5α and ChBac5, to detailed analysis. OaBac5α and ChBac5 were homologous to each other and to bovine Bac5. Both exhibited potent, broad-spectrum antimicrobial activity under low-concentration salt conditions. While the peptides remained active againstEscherichia coli, Pseudomonas aeruginosa,Bacillus subtilis, and Listeria monocytogenesin 100 mM NaCl, they lost activity against Staphylococcus aureus and Candida albicans under these conditions. ChBac5 was shown to bind lipopolysaccharide, a property that could enhance its ability to kill gram-negative bacteria. Proline-rich Bac5 peptides are highly conserved in ruminants and may contribute significantly to their innate host defense mechanisms.


Sign in / Sign up

Export Citation Format

Share Document