scholarly journals Glycosylation of Receptor Binding Domain of SARS-CoV-2 S-Protein Influences on Binding to Immobilized DNA Aptamers

2022 ◽  
Vol 23 (1) ◽  
pp. 557
Author(s):  
Fedor Grabovenko ◽  
Liudmila Nikiforova ◽  
Bogdan Yanenko ◽  
Andrey Ulitin ◽  
Eugene Loktyushov ◽  
...  

Nucleic acid aptamers specific to S-protein and its receptor binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virions are of high interest as potential inhibitors of viral infection and recognizing elements in biosensors. Development of specific therapy and biosensors is complicated by an emergence of new viral strains bearing amino acid substitutions and probable differences in glycosylation sites. Here, we studied affinity of a set of aptamers to two Wuhan-type RBD of S-protein expressed in Chinese hamster ovary cell line and Pichia pastoris that differ in glycosylation patterns. The expression system for the RBD protein has significant effects, both on values of dissociation constants and relative efficacy of the aptamer binding. We propose glycosylation of the RBD as the main force for observed differences. Moreover, affinity of a several aptamers was affected by a site of biotinylation. Thus, the robustness of modified aptamers toward new virus variants should be carefully tested.

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1983
Author(s):  
Irani Alves Ferreira-Bravo ◽  
Jeffrey J. DeStefano

The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.


2021 ◽  
Author(s):  
Irani Alves Ferreira-Bravo ◽  
Jeffrey J. DeStefano

The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor binding domain (RBD) on the viral S protein with angiotensin converting enzyme 2 (ACE2) on the surface of human host cells. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2′-fluoroarabinonucleic acid (FANA). The best selected ~ 79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~ 10-20 nM and a binding half-life for the RBD of 53 ± 18 minutes. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.


2020 ◽  
Vol 6 (45) ◽  
pp. eabc9999 ◽  
Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Yang Han ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
...  

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein–driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV–derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Yan Guo ◽  
Wenhui He ◽  
Huihui Mou ◽  
Lizhou Zhang ◽  
Jing Chang ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines. IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 96
Author(s):  
Iuliia A. Merkuleva ◽  
Dmitry N. Shcherbakov ◽  
Mariya B. Borgoyakova ◽  
Daniil V. Shanshin ◽  
Andrey P. Rudometov ◽  
...  

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.


2020 ◽  
Author(s):  
Brian D. Quinlan ◽  
Wenhui He ◽  
Huihui Mou ◽  
Lizhou Zhang ◽  
Yan Guo ◽  
...  

ABSTRACTThe SARS-coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing the angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino acid fragment of the 1273-amino acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD expresses inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) expresses markedly more efficiently, and generates a more potent neutralizing responses as a DNA vaccine antigen, than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers such as an H. pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kaewta Rattanapisit ◽  
Balamurugan Shanmugaraj ◽  
Suwimon Manopwisedjaroen ◽  
Priyo Budi Purwono ◽  
Konlavat Siriwattananon ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the ongoing global outbreak of coronavirus disease (COVID-19) which is a significant threat to global public health. The rapid spread of COVID-19 necessitates the development of cost-effective technology platforms for the production of vaccines, drugs, and protein reagents for appropriate disease diagnosis and treatment. In this study, we explored the possibility of producing the receptor binding domain (RBD) of SARS-CoV-2 and an anti-SARS-CoV monoclonal antibody (mAb) CR3022 in Nicotiana benthamiana. Both RBD and mAb CR3022 were transiently produced with the highest expression level of 8 μg/g and 130 μg/g leaf fresh weight respectively at 3 days post-infiltration. The plant-produced RBD exhibited specific binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, the plant-produced mAb CR3022 binds to SARS-CoV-2, but fails to neutralize the virus in vitro. This is the first report showing the production of anti-SARS-CoV-2 RBD and mAb CR3022 in plants. Overall these findings provide a proof-of-concept for using plants as an expression system for the production of SARS-CoV-2 antigens and antibodies or similar other diagnostic reagents against SARS-CoV-2 rapidly, especially during epidemic or pandemic situation.


Sign in / Sign up

Export Citation Format

Share Document