scholarly journals Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation

2022 ◽  
Vol 23 (2) ◽  
pp. 732
Author(s):  
Katrin Peckert-Maier ◽  
Dmytro Royzman ◽  
Pia Langguth ◽  
Anita Marosan ◽  
Astrid Strack ◽  
...  

Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a “pro-resolution” therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.

2020 ◽  
Vol 6 (40) ◽  
pp. eaba6584
Author(s):  
Tianzhen He ◽  
De Yang ◽  
Xiao-Qing Li ◽  
Mengmeng Jiang ◽  
Md Sahidul Islam ◽  
...  

CD4+Foxp3+ regulatory T cells (Tregs) are pivotal for the inhibition of autoimmune inflammatory responses. One way to therapeutically harness the immunosuppressive actions of Tregs is to stimulate the proliferative expansion of TNFR2-expressing CD4+Foxp3+ Tregs via transmembrane TNF (tmTNF). Here, we report that two-pore channel (TPC) inhibitors markedly enhance tmTNF expression on antigen-presenting cells. Furthermore, injection of TPC inhibitors including tetrandrine, or TPC-specific siRNAs in mice, increases the number of Tregs in a tmTNF/TNFR2-dependent manner. In a mouse colitis model, inhibition of TPCs by tetrandrine markedly attenuates colon inflammation by expansion of Tregs. Mechanistically, we show that TPC inhibitors enhance tmTNF levels by disrupting surface expression of TNF-α–converting enzyme by regulating vesicle trafficking. These results suggest that the therapeutic potential of TPC inhibitors is mediated by expansion of TNFR2-expressing Tregs and elucidate the basis of clinical use in the treatment of autoimmune and other inflammatory diseases.


Author(s):  
Mahdi Zavvar ◽  
Mohsen Abdolmaleki ◽  
Hamid Farajifard ◽  
Farshid Noorbakhsh ◽  
Kayhan Azadmanesh ◽  
...  

Regulatory T cells (Tregs) play a major role in the prevention of autoimmune diseases. Transfer of Foxp3 gene into conventional T cells converts their phenotype to regulatory T cells. Therefore, the question arises as to whether adoptively transferred in vitro differentiated Treg cells specific for a locally expressed antigen might have better inhibitory effects on the progression of the disease as compared with antigen-nonspecific T reg cells. Herein, we investigated the therapeutic potential of primed and unprimed retrovirus mediated Foxp3-overexpression T cells following intravenously injected of these cells into affected rats with collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. Our analyses demonstrate that systemic administration of collagen II primed Foxp3-transduced T cells could markedly ameliorate CIA inflammatory responses at clinical (p<0.0014) and pathological exchanges including cellular infiltration (p=0.002), bone erosion (p=0.0013) and synovial hyperplasia (p=0.002). In contrast, collagen II unprimed Foxp3-transduced T cells like as collagen II primed or unprimed GFP-transduced T cells did not reveal any beneficial effects on arthritis features as compared with untreated group (p>0.05). Therefore, we believe that collagen II primed Foxp3-transduced T cells are interacting locally and systemically with immune cells which reveled with decreasing of T cells infiltration into joints along with specific CII IgG production. Considering the results described here, it appears that the using patients' T cells which previously exposed to specific antigens may have more effective therapeutic advantage in the production of induced regulatory T cells in the treatment of arthritis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jian Lu ◽  
Weiwei Wang ◽  
Peiyuan Li ◽  
Xiaodong Wang ◽  
Chao Gao ◽  
...  

AbstractRegulatory T cells (Tregs), which characteristically express forkhead box protein 3 (Foxp3), are essential for the induction of immune tolerance. Here, we investigated microRNA-146a (miR-146a), a miRNA that is widely expressed in Tregs and closely related to their homeostasis and function, with the aim of enhancing the function of Tregs by regulating miR-146a and then suppressing transplant rejection. The effect of the absence of miR-146a on Treg function in the presence or absence of rapamycin was detected in both a mouse heart transplantation model and cell co-cultures in vitro. The absence of miR-146a exerted a mild tissue-protective effect by transiently prolonging allograft survival and reducing the infiltration of CD4+ and CD8+ T cells into the allografts. Meanwhile, the absence of miR-146a increased Treg expansion but impaired the ability of Tregs to restrict T helper cell type 1 (Th1) responses. A miR-146a deficiency combined with interferon (IFN)-γ blockade repaired the impaired Treg function, further prolonged allograft survival, and alleviated rejection. Importantly, miR-146a regulated Tregs mainly through the IFN-γ/signal transducer and activator of transcription (STAT) 1 pathway, which is implicated in Treg function to inhibit Th1 responses. Our data suggest miR-146a controls a specific aspect of Treg function, and modulation of miR-146a may enhance Treg efficacy in alleviating heart transplant rejection in mice.


Author(s):  
L. Sams ◽  
S. Kruger ◽  
V. Heinemann ◽  
D. Bararia ◽  
S. Haebe ◽  
...  

Abstract Purpose This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). Patients and methods Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. Results Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. Conclusions Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 237.1-238
Author(s):  
M. Rosenzwajg ◽  
R. Lorenzon ◽  
P. Cacoub ◽  
F. Pitoiset ◽  
S. Aractingi ◽  
...  

Background:Regulatory T cells (Tregs) prevent autoimmunity and control inflammation. As low-dose interleukin-2 (ld-IL2) expands and activates Tregs, it has a broad therapeutic potential for any autoimmune or inflammatory disease (AIID). We performed a disease-finding “basket trial” (TRANSREGNCT01988506) in patients affected by one of 11 different AIID and reported the outcome of the first 46 patients (Rosenzwajg et al, ARD 2019).Objectives:Here we analyzed and discussed results from deep immunophenotyping, of 78 patients, to comprehensively study the effect of ld-IL2 on the immune system of patients affected by various AIIDMethods:We performed a prospective, open label, phase I-IIa study in 78 patients with a mild to moderate form of one of 13 selected AIID. All patients received ld-IL2 (1 million IU/day) for 5 days, followed by fortnightly injections for 6 months. Deep immunophenotyping was performed before and after 5 days of ld-IL2.Results:ld-IL2 significantly expands both memory Tregs as well as naïve Tregs, including recent thymic emigrant Tregs. It also activates Tregs as demonstrated by the significantly increased expression of HLA-DR, CD39, CD73, GITR, CTLA-4. Similar results were observed across the different AIID.Conclusion:ld-IL2 “universally” improves Treg fitness across 13 autoimmune and inflammatory disease.References:[1]Rosenzwajg M#, Lorenzon R#, Cacoub P, Pham HP, Pitoiset F, El Soufi K, RIbet C, Bernard C, Aractingi S, Banneville B, Beaugerie L, Berenbaum F, Champey J, Chazouilleres O, Corpechot C, Fautrel B, Mekinian A, Regnier E, Saadoun D, Salem JE, Sellam J, Seksik P, Daguenel-Nguyen A, Doppler V, Mariau J, Vicaut E, Klatzmann D. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis. 2019 Feb;78(2):209-217. doi: 10.1136/annrheumdis-2018-214229. Epub 2018 Nov 24.Disclosure of Interests:Michelle Rosenzwajg: None declared, Roberta Lorenzon: None declared, Patrice cacoub: None declared, Fabien Pitoiset: None declared, Selim Aractingi: None declared, Beatrice Banneville Speakers bureau: Lilly, Novartis, Laurent Beaugerie: None declared, Francis Berenbaum Grant/research support from: TRB Chemedica (through institution), MSD (through institution), Pfizer (through institution), Consultant of: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandoz, Regeneron, Gilead, Bone Therapeutics, Regulaxis, Peptinov, 4P Pharma, Paid instructor for: Sandoz, Speakers bureau: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandoz, Regeneron, Gilead, Sandoz, Julien Champey: None declared, Olivier Chazouilleres: None declared, Christophe Corpechot: None declared, Bruno Fautrel Grant/research support from: AbbVie, Lilly, MSD, Pfizer, Consultant of: AbbVie, Biogen, BMS, Boehringer Ingelheim, Celgene, Lilly, Janssen, Medac MSD France, Nordic Pharma, Novartis, Pfizer, Roche, Sanofi Aventis, SOBI and UCB, Arsene Mekinian: None declared, Elodie Regnier: None declared, david Saadoun: None declared, Joe-Elie Salem: None declared, Jérémie SELLAM: None declared, Philippe Seksik: None declared, David Klatzmann Consultant of: ILTOO Pharma


2014 ◽  
Vol 14 (7) ◽  
pp. 931-945 ◽  
Author(s):  
Belal Chaudhary ◽  
May Abd Al Samid ◽  
Basel K al-Ramadi ◽  
Eyad Elkord

Sign in / Sign up

Export Citation Format

Share Document