scholarly journals Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington’s Disease

2022 ◽  
Vol 23 (2) ◽  
pp. 780
Author(s):  
Shuvadeep Maity ◽  
Pragya Komal ◽  
Vaishali Kumar ◽  
Anshika Saxena ◽  
Ayesha Tungekar ◽  
...  

Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington’s disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.

2017 ◽  
Vol 114 (8) ◽  
pp. 2084-2089 ◽  
Author(s):  
Ganesh M. Nawkar ◽  
Chang Ho Kang ◽  
Punyakishore Maibam ◽  
Joung Hun Park ◽  
Young Jun Jung ◽  
...  

Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance ofhy5plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box–like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.


Cell Research ◽  
2020 ◽  
Author(s):  
Fang Xu ◽  
Wanqing Du ◽  
Qin Zou ◽  
Yuting Wang ◽  
Xin Zhang ◽  
...  

Abstract Cells mitigate ER stress through the unfolded protein response (UPR). Here, we report formation of ER whorls as an effector mechanism of the ER stress response. We found that strong ER stress induces formation of ER whorls, which contain ER-resident proteins such as the Sec61 complex and PKR-like ER kinase (PERK). ER whorl formation is dependent on PERK kinase activity and is mediated by COPII machinery, which facilitates ER membrane budding to form tubular-vesicular ER whorl precursors. ER whorl precursors then go through Sec22b-mediated fusion to form ER whorls. We further show that ER whorls contribute to ER stress-induced translational inhibition by possibly modulating PERK activity and by sequestering translocons in a ribosome-free environment. We propose that formation of ER whorls reflects a new type of ER stress response that controls inhibition of protein translation.


2019 ◽  
Author(s):  
Rebecca A.S. Palu ◽  
Clement Y. Chow

ABSTRACTEndoplasmic reticulum (ER) stress-induced apoptosis is a primary cause and modifier of degeneration in a number of genetic disorders. Understanding how genetic variation between individuals influences the ER stress response and subsequent activation of apoptosis could improve individualized therapies and predictions of outcomes for patients. In this study, we find that the uncharacterized, membrane-bound metallopeptidase CG14516 in Drosophila melanogaster, which we rename as SUPpressor of ER stress-induced DEATH (superdeath), plays a role in modifying ER stress-induced apoptosis. We demonstrate that loss of superdeath reduces apoptosis and degeneration in the Rh1G69D model of ER stress through the JNK signaling cascade. This effect on apoptosis occurs without altering the activation of the unfolded protein response (IRE1 and PERK), suggesting that the beneficial pro-survival effects of this response are intact. Furthermore, we show that superdeath functions epistatically upstream of CDK5, a known JNK-activated pro-apoptotic factor in this model of ER stress. We demonstrate that superdeath is not only a modifier of this particular model, but functions as a general modifier of ER stress-induced apoptosis across different tissues and ER stresses. Finally, we present evidence of Superdeath localization to the endoplasmic reticulum membrane. While similar in sequence to a number of human metallopeptidases found in the plasma membrane and ER membrane, its localization suggests that superdeath is orthologous to ERAP1/2 in humans. Together, this study provides evidence that superdeath is a link between stress in the ER and activation of cytosolic apoptotic pathways.SIGNIFICANCE STATEMENTGenetic diseases display a great deal of variability in presentation, progression, and overall outcomes. Much of this variability is caused by differences in genetic background among patients. One process that commonly modifies degenerative disease is the endoplasmic reticulum (ER) stress response. Understanding the genetic sources of variation in the ER stress response could improve individual diagnosis and treatment decisions. In this study, we characterized one such modifier in Drosophila melanogaster, the membrane-bound metallopeptidase CG14516 (superdeath). Loss of this enzyme suppresses a model of ER stress-induced degeneration by reducing cell death without altering the beneficial activation of the unfolded protein response. Our findings make superdeath and its orthologues attractive therapeutic targets in degenerative disease.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 887-887 ◽  
Author(s):  
Rekha Rao ◽  
Warren Fiskus ◽  
Yonghua Yang ◽  
Rajeshree Joshi ◽  
Pravina Fernandez ◽  
...  

Abstract The 26S proteasome inhibitor bortezomib (BZ), which increases intracellular unfolded protein levels and toxicity through endoplasmic reticulum (ER) stress response, was shown to have a single agent activity in relapsed mantle cell lymphoma (MCL). Here we have determined that treatment with hydroxamic acid analogue (HA) pan-histone deacetylase (HDAC) inhibitor (HDI), e.g., panobinostat (LBH589, Novartis Pharmaceuticals Inc) induces the CDK inhibitors p21 and p27, and attenuates the levels of c-Myc, CDK4 and cyclin D1 in the cultured (Jeko-1, MO-2058 and Granta-519) and in primary patient-derived MCL cells. In a dose-dependent manner, panobinostat also induced Bax and Bak, and attenuated Bcl-xL, XIAP, survivin, AKT and c-Raf levels, resulting in growth inhibition and apoptosis of MCL cells. We have previously demonstrated that HDAC6 deacetylates heat shock protein (hsp) 90, as well as shuttles and sequesters misfolded and polyubiquitylated proteins into the protective perinuclear aggresome.. By inhibiting HDAC6, panobinostat (10 to 50 nM) induced acetylation of hsp90 in MCL cells. This inhibited the ATP binding and co-chaperone association, and abrogated the chaperone function of hsp90 for the MCL- relevant, hsp90 client proteins, e.g., cyclin D1, CDK4, c-Raf and AKT in the cultured and primary MCL cells. Panobinostat mediated inhibition of HDAC6 abrogated formation of the aggresome and augmented endoplasmic reticulum (ER)-based unfolded protein response (UPR). Treatment of MCL cells with BZ induced the formation of aggresome (as detected by confocal immuno-fluorescence microscopy and electron microscopy), as well as induced UPR and ER stress response. The latter was associated with BZ-mediated increased levels of GRP78, the spliced form of XBP1 (XBP1s) and p-eIF2α protein. As compared to the control siRNA treated cells, knockdown of GRP78 by siRNA markedly increased BZ-induced CHOP and Noxa levels and significantly augmented BZ-induced apoptosis of cultured MCL cells. Co-treatment of MCL cells with panobinostat abrogated BZ-induced aggresome formation, decreased the levels of ATF4, XBP1s and p-eIF2α, as well as increased the levels of CHOP, Noxa and GADD34. Ultrastructural analysis of Jeko-1 cells also revealed that co-treatment with panobinostat and BZ showed pronounced ER dilatation compared to panobinostat treatment alone, suggestive of enhanced ER stress. Higher and persistent CHOP and Noxa levels suggested a protracted ER-stress, associated with synergistic increase in apoptosis of MCL but not normal CD34+ bone marrow progenitor cells (p < 0.01). Conversely, knockdown of CHOP levels by siRNA significantly inhibited panobinostat and BZ-induced cell death of MCL cells. Results of ongoing in vivo studies of panobinostat and/or BZ in the NOD/SCID mouse xenograft model of Jeko-1 MCL cells will be presented. These findings strongly support further in vivo evaluation of the efficacy of the combination of panobinostat with BZ against human MCL. Additionally, the findings create the rationale to develop targeted knockdown of GRP78 as a novel strategy to augment lethal ER stress due to panobinostat and BZ and resulting activity against MCL cells.


Author(s):  
Kashi Raj Bhattarai ◽  
Thoufiqul Alam Riaz ◽  
Hyung-Ryong Kim ◽  
Han-Jung Chae

AbstractThe endoplasmic reticulum (ER) is an essential organelle of eukaryotic cells. Its main functions include protein synthesis, proper protein folding, protein modification, and the transportation of synthesized proteins. Any perturbations in ER function, such as increased demand for protein folding or the accumulation of unfolded or misfolded proteins in the ER lumen, lead to a stress response called the unfolded protein response (UPR). The primary aim of the UPR is to restore cellular homeostasis; however, it triggers apoptotic signaling during prolonged stress. The core mechanisms of the ER stress response, the failure to respond to cellular stress, and the final fate of the cell are not yet clear. Here, we discuss cellular fate during ER stress, cross talk between the ER and mitochondria and its significance, and conditions that can trigger ER stress response failure. We also describe how the redox environment affects the ER stress response, and vice versa, and the aftermath of the ER stress response, integrating a discussion on redox imbalance-induced ER stress response failure progressing to cell death and dynamic pathophysiological changes.


2021 ◽  
Vol 118 (39) ◽  
pp. e2110476118
Author(s):  
Wei Liang ◽  
Weiwei Qi ◽  
Yang Geng ◽  
Linhan Wang ◽  
Jing Zhao ◽  
...  

Necroptosis is a form of regulated necrosis mediated by the formation of the necrosome, composed of the RIPK1/RIPK3/MLKL complex. Here, we developed a proximity ligation assay (PLA) that allows in situ visualization of necrosomes in necroptotic cells and in vivo. Using PLA assay, we show that necrosomes can be found in close proximity to the endoplasmic reticulum (ER). Furthermore, we show that necroptosis activates ER stress sensors, PERK, IRE1α, and ATF6 in a RIPK1-RIPK3-MLKL axis–dependent manner. Activated MLKL can be translocated to the ER membrane to directly initiate the activation of ER stress signaling. The activation of IRE1α in necroptosis promotes the splicing of XBP1, and the subsequent incorporation of spliced XBP1 messenger RNA (mRNA) into extracellular vesicles (EVs). Finally, we show that unlike that of a conventional ER stress response, necroptosis promotes the activation of unfolded protein response (UPR) sensors without affecting their binding of GRP78. Our study reveals a signaling pathway that links MLKL activation in necroptosis to an unconventional ER stress response.


2019 ◽  
Vol 20 (3) ◽  
pp. 749 ◽  
Author(s):  
Sandhya Chipurupalli ◽  
Elango Kannan ◽  
Vinay Tergaonkar ◽  
Richard D’Andrea ◽  
Nirmal Robinson

It is evident that regions within tumors are deprived of oxygen, which makes the microenvironment hypoxic. Cancer cells experiencing hypoxia undergo metabolic alterations and cytoprotective adaptive mechanisms to survive such stringent conditions. While such mechanisms provide potential therapeutic targets, the mechanisms by which hypoxia regulates adaptive responses—such as ER stress response, unfolded protein response (UPR), anti-oxidative responses, and autophagy—remain elusive. In this review, we summarize the complex interplay between hypoxia and the ER stress signaling pathways that are activated in the hypoxic microenvironment of the tumors.


2020 ◽  
Author(s):  
Maria Teresa Borrello ◽  
Patricia Santofimia-Castaño ◽  
Marco Bocchio ◽  
Angela Listi ◽  
Nicolas Fraunhoffer ◽  
...  

AbstractNUPR1 is a stress response protein overexpressed upon cell injury in virtually all organs including the exocrine pancreas. Despite NUPR1’s well established role in the response to cell stress, the molecular and structural machineries triggered by NUPR1 activation remain largely unknown. In this study, we uncover an important role for NUPR1 in participating in the unfolded protein response pathway and the endoplasmic reticulum stress response. Biochemical results, confirmed by ultrastructural morphological observation, revealed alterations in the UPR in acinar cells of germline-deleted NUPR1 murine models, consistent with the inability to restore general protein translation. Bioinformatical analysis of NUPR1 interacting partners showed significant enrichment in translation initiation factors, including eukaryotic initiation factor (eIF) 2α. Co-immunoprecipitation and proximity ligation assays both confirmed interaction between NUPR1 and eIF2α and its phosphorylated form (p-eIF2α). Our. Moreover, our data also suggest loss of NUPR1 in cells results in maintained eIF2α phosphorylation and evaluation of nascent proteins by (peIF2α), and click chemistry revealed that NUPR1-depleted PANC-1 cells displayed a slower post stress protein translational recovery compared to wild-type. Combined, this data proposes a novel role for NUPR1 in the integrated stress response pathway, at least partially through promoting efficient PERK-branch activity and resolution through a unique interaction with eIF2α.SignificanceIn the pancreas, NUPR1 is required for a resolution of the ER stress response. During ER stress response, NUPR1 binds both eIF2α allowing for its dephosphorylation and restoration of new protein synthesis.HighlightsBiochemical analysis revealed a general reduction in the protein expression of downstream mediators of the unfolded protein response in the pancreas of mice lacking Nupr1. This finding suggests a novel role for NUPR1 in the UPR/ER stress response.Ultrastructural analysis of pancreata revealed reduced morphological alterations in tunicamycin-treated Nupr1-/- mice compared to Nupr1+/+ mice consistent with a maintained block in general protein translation.Co-immunoprecipitation of tagged NUPR1 confirmed a novel interaction with eIF2α. Depletion of NUPR1 prolonged phosphorylation of eIF2α, suggesting it may be involved in attenuation of the PERK branch of the UPR.NUPR1-depleted PANC-1 cells displayed a slower recovery of protein translation following UPR activation


2001 ◽  
Vol 21 (4) ◽  
pp. 1239-1248 ◽  
Author(s):  
Hiderou Yoshida ◽  
Tetsuya Okada ◽  
Kyosuke Haze ◽  
Hideki Yanagi ◽  
Takashi Yura ◽  
...  

ABSTRACT The levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) are controlled by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element (ERSE), the consensus sequence of which is CCAAT-N9-CCACG. We recently proposed that ER stress response factor (ERSF) binding to ERSE is a heterologous protein complex consisting of the constitutive component NF-Y (CBF) binding to CCAAT and an inducible component binding to CCACG and identified the basic leucine zipper-type transcription factors ATF6α and ATF6β as inducible components of ERSF. ATF6α and ATF6β produced by ER stress-induced proteolysis bind to CCACG only when CCAAT is bound to NF-Y, a heterotrimer consisting of NF-YA, NF-YB, and NF-YC. Interestingly, the NF-Y and ATF6 binding sites must be separated by a spacer of 9 bp. We describe here the basis for this strict requirement by demonstrating that both ATF6α and ATF6β physically interact with NF-Y trimer via direct binding to the NF-YC subunit. ATF6α and ATF6β bind to the ERSE as a homo- or heterodimer. Furthermore, we showed that ERSF including NF-Y and ATF6α and/or β and capable of binding to ERSE is indeed formed when the cellular UPR is activated. We concluded that ATF6 homo- or heterodimers recognize and bind directly to both the DNA and adjacent protein NF-Y and that this complex formation process is essential for transcriptional induction of ER chaperones.


Sign in / Sign up

Export Citation Format

Share Document