scholarly journals Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation

2022 ◽  
Vol 23 (2) ◽  
pp. 788
Author(s):  
Greer K. Arthur ◽  
Glenn Cruse

Mast cells are tissue-resident immune cells that function in both innate and adaptive immunity through the release of both preformed granule-stored mediators, and newly generated proinflammatory mediators that contribute to the generation of both the early and late phases of the allergic inflammatory response. Although mast cells can be activated by a vast array of mediators to contribute to homeostasis and pathophysiology in diverse settings and contexts, in this review, we will focus on the canonical setting of IgE-mediated activation and allergic inflammation. IgE-dependent activation of mast cells occurs through the high affinity IgE receptor, FcεRI, which is a multimeric receptor complex that, once crosslinked by antigen, triggers a cascade of signaling to generate a robust response in mast cells. Here, we discuss FcεRI structure and function, and describe established and emerging roles of the β subunit of FcεRI (FcεRIβ) in regulating mast cell function and FcεRI trafficking and signaling. We discuss current approaches to target IgE and FcεRI signaling and emerging approaches that could target FcεRIβ specifically. We examine how alternative splicing of FcεRIβ alters protein function and how manipulation of splicing could be employed as a therapeutic approach. Targeting FcεRI directly and/or IgE binding to FcεRI are promising approaches to therapeutics for allergic inflammation. The characteristic role of FcεRIβ in both trafficking and signaling of the FcεRI receptor complex, the specificity to IgE-mediated activation pathways, and the preferential expression in mast cells and basophils, makes FcεRIβ an excellent, but challenging, candidate for therapeutic strategies in allergy and asthma, if targeting can be realized.

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 946-956 ◽  
Author(s):  
Dean D. Metcalfe

Abstract Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors.


2016 ◽  
Vol 113 (49) ◽  
pp. 14115-14120 ◽  
Author(s):  
Glenn Cruse ◽  
Yuzhi Yin ◽  
Tomoki Fukuyama ◽  
Avanti Desai ◽  
Greer K. Arthur ◽  
...  

Allergic diseases are driven by activation of mast cells and release of mediators in response to IgE-directed antigens. However, there are no drugs currently available that can specifically down-regulate mast cell function in vivo when chronically administered. Here, we describe an innovative approach for targeting mast cells in vitro and in vivo using antisense oligonucleotide-mediated exon skipping of the β-subunit of the high-affinity IgE receptor (FcεRIβ) to eliminate surface high-affinity IgE receptor (FcεRI) expression and function, rendering mast cells unresponsive to IgE-mediated activation. As FcεRIβ expression is restricted to mast cells and basophils, this approach would selectively target these cell types. Given the success of exon skipping in clinical trials to treat genetic diseases such as Duchenne muscular dystrophy, we propose that exon skipping of FcεRIβ is a potential approach for mast cell-specific treatment of allergic diseases.


2017 ◽  
Vol 37 (7) ◽  
Author(s):  
Xiaocui Zhang ◽  
Geneviève Lavoie ◽  
Antoine Méant ◽  
Léo Aubert ◽  
Marie Cargnello ◽  
...  

ABSTRACT The scaffolding adapter protein Gab2 (Grb2-associated binder) promotes cell proliferation, survival, and motility by engaging several signaling pathways downstream of growth factor and cytokine receptors. In particular, Gab2 plays essential roles in mast cells, as it is required for phosphoinositide 3-kinase (PI3K) activation in response to Kit and the high-affinity IgE receptor. While the positive role of Gab2 in PI3K signaling is well documented, very little is known about the mechanisms that attenuate its function. Here we show that Gab2 becomes phosphorylated on multiple proline-directed sites upon stimulation of the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. We demonstrate that ERK1 and ERK2 interact with Gab2 via a novel docking motif, which is required for subsequent Gab2 phosphorylation in response to ERK1/2 activation. We identified four ERK1/2-dependent phosphorylation sites in Gab2 that prevent the recruitment of the p85 regulatory subunit of PI3K. Using bone marrow-derived mast cells to study Gab2-dependent signaling, we found that the inhibition of ERK1/2 activity promotes Akt signaling in response to Kit and the high-affinity IgE receptor. Together, our results indicate that ERK1/2 participates in a negative-feedback loop that attenuates PI3K/Akt signaling in response to various agonists.


2009 ◽  
Vol 184 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Michael Poderycki ◽  
Yoshiaki Tomimori ◽  
Tomoaki Ando ◽  
Wenbin Xiao ◽  
Mari Maeda-Yamamoto ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109800 ◽  
Author(s):  
Asma Kassas ◽  
Ivan C. Moura ◽  
Yumi Yamashita ◽  
Jorg Scheffel ◽  
Claudine Guérin-Marchand ◽  
...  

2008 ◽  
Vol 336 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Akira Matsuda ◽  
Yoshimichi Okayama ◽  
Nobuyuki Ebihara ◽  
Norihiko Yokoi ◽  
Peisong Gao ◽  
...  

2010 ◽  
Vol 220 (1-2) ◽  
pp. 17-24 ◽  
Author(s):  
Christine McCary ◽  
Brian P. Tancowny ◽  
Adriana Catalli ◽  
Leslie C. Grammer ◽  
Kathleen E. Harris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document