scholarly journals A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour

2022 ◽  
Vol 23 (2) ◽  
pp. 790
Author(s):  
Csilla Lea Fazekas ◽  
Adrienn Szabó ◽  
Bibiána Török ◽  
Krisztina Bánrévi ◽  
Pedro Correia ◽  
...  

Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other “classical” neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.

2017 ◽  
Vol 20 (2) ◽  
pp. 313-319 ◽  
Author(s):  
M. Matysek ◽  
S. Mozel ◽  
R. Szalak ◽  
A. Zacharko-Siembida ◽  
K. Obszańska ◽  
...  

Abstract αCaMKII, widely occurring in the central nervous system, plays a significant role in cognitive processes. It is well known that diabetes is a risk factor that may trigger brain atrophy, cognitive dysfunction and finally lead to memory loss. Antioxidants richly present in bilberry fruits are believed to have significant effects on diabetes-related brain dysfunctions mainly due to their abilities to modulate neurotransmitter release that lead to reduction of the negative impact of free radicals on cognitive processes. The aim of the present research was to immunohistochemically investigate the expression patterns of αCaMKII in hippocampal neurons from non-diabetic, diabetic and diabetic rats fed with an extract of bilberry fruit. The obtained results show that in comparison to the control group, in diabetic rats hippocampal neurons immunoreactive (ir) to αCaMKII were swollen and the lengths of the neuronal fibres were reduced. Further study shows that in diabetic rats fed with bilberry fruit, αCaMKII-positive nerve fibres were significantly longer when compared to the groups of diabetic and control rats. Additionally, we observed statistically significant changes in the average larger diameter of αCaMKII-ir hippocampal neurons between groups of diabetic rats (with vs. without supplement of bilberry fruit). The results of the present work suggest that antioxidants present in bilberry fruits influence the morphology of and possibly exhibit beneficial and neuroprotective effects on hippocampal neurons during diabetes. It is likely that changes in the appearance of αCaMKII-expressed hippocampal neurons may reflect the diabetes-evoked rise in Ca2+ level in the cerebral nerve terminals. The present research extends our knowledge of preventive mechanisms for cognitive dysfunctions occurring in the brain during diabetes.


1998 ◽  
Vol 95 (4) ◽  
pp. 1852-1857 ◽  
Author(s):  
V. G. Kimonides ◽  
N. H. Khatibi ◽  
C. N. Svendsen ◽  
M. V. Sofroniew ◽  
J. Herbert

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yajun Xie ◽  
Xiaoyan Lv ◽  
Dongsheng Ni ◽  
Jianing Liu ◽  
Yanxia Hu ◽  
...  

Abstract Decreased expression of 4-hydroxyphenylpyruvic acid dioxygenase (HPD), a key enzyme for tyrosine metabolism, is a cause of human tyrosinemia. However, the regulation of HPD expression remains largely unknown. Here, we demonstrate that molecular chaperone TTC36, which is highly expressed in liver, is associated with HPD and reduces the binding of protein kinase STK33 to HPD, thereby inhibiting STK33-mediated HPD T382 phosphorylation. The reduction of HPD T382 phosphorylation results in impaired recruitment of FHA domain-containing PELI1 and PELI1-mediated HPD polyubiquitylation and degradation. Conversely, deficiency or depletion of TTC36 results in enhanced STK33-mediated HPD T382 phosphorylation and binding of PELI1 to HPD and subsequent PELI1-mediated HPD downregulation. Ttc36−/− mice have reduced HPD expression in the liver and exhibit tyrosinemia, damage to hippocampal neurons, and deficits of learning and memory. These findings reveal a previously unknown regulation of HPD expression and highlight the physiological significance of TTC36-STK33-PELI1-regulated HPD expression in tyrosinemia and tyrosinemia-associated neurological disorders.


2019 ◽  
Vol 75 (9) ◽  
pp. 1624-1632 ◽  
Author(s):  
Albert Orock ◽  
Sreemathi Logan ◽  
Ferenc Deak

AbstractCognitive impairment in the aging population is quickly becoming a health care priority, for which currently no disease-modifying treatment is available. Multiple domains of cognition decline with age even in the absence of neurodegenerative diseases. The cellular and molecular changes leading to cognitive decline with age remain elusive. Synaptobrevin-2 (Syb2), the major vesicular SNAP receptor protein, highly expressed in the cerebral cortex and hippocampus, is essential for synaptic transmission. We have analyzed Syb2 protein levels in mice and found a decrease with age. To investigate the functional consequences of lower Syb2 expression, we have used adult Syb2 heterozygous mice (Syb2+/−) with reduced Syb2 levels. This allowed us to mimic the age-related decrease of Syb2 in the brain in order to selectively test its effects on learning and memory. Our results show that Syb2+/− animals have impaired learning and memory skills and they perform worse with age in the radial arm water maze assay. Syb2+/− hippocampal neurons have reduced synaptic plasticity with reduced release probability and impaired long-term potentiation in the CA1 region. Syb2+/− neurons also have lower vesicular release rates when compared to WT controls. These results indicate that reduced Syb2 expression with age is sufficient to cause cognitive impairment.


Author(s):  
Narges Marefati ◽  
Amin Mokhtari-Zaer ◽  
Farimah Beheshti ◽  
Sareh Karimi ◽  
Zahra Mahdian ◽  
...  

Abstract Background Modulatory effects of soy extract and estradiol on the central nervous system (CNS) have been reported. The effect of soy on scopolamine-induced spatial learning and memory in comparison to the effect of estradiol was investigated. Materials and methods Ovariectomized rats were divided into the following groups: (1) control, (2) scopolamine (Sco), (3) scopolamine-soy 20 (Sco-S 20), (4) scopolamine-soy 60 (Sco-S 60), (5) scopolamine-estradiol 20 (Sco-E 20) and (6) scopolamine-estradiol 60 (Sco-E 60). Soy extract, estradiol and vehicle were administered daily for 6 weeks before training in the Morris water maze (MWM) test. Scopolamine (2 mg/kg) was injected 30 min before training in the MWM test. Results In the MWM, the escape latency and traveled path to find the platform in the Sco group was prolonged compared to the control group (p < 0.001). Treatment by higher doses of soy improved performances of the rats in the MWM (p < 0.05 – p < 0.001). However, treatment with both doses of estradiol (20 and 60 μg/kg) resulted in a statistically significant improvement in the MWM (p < 0.01 – p < 0.001). Cortical, hippocampal and serum levels of malondialdehyde (MDA), as an index of lipid peroxidation, were increased which was prevented by soy extract and estradiol (p < 0.001). Cortical, hippocampal as well as serum levels of the total thiol, superoxide dismutase (SOD) and catalase (CAT) in Sco group were lower than the control group (p < 0.001) while they were enhanced when the animals were treated by soy extract and estradiol (p < 0.01 – p < 0.001). Conclusions It was observed that both soy extract and estradiol prevented learning and memory impairments induced by scopolamine in ovariectomized rats. These effects can be attributed to their protective effects on oxidative damage of the brain tissue.


Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Tyler Bland ◽  
Mingyan Zhu ◽  
Crystal Dillon ◽  
Gulcan Semra Sahin ◽  
Jose Luis Rodriguez-Llamas ◽  
...  

Abstract Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.


1978 ◽  
Vol 56 (2) ◽  
pp. 331-333 ◽  
Author(s):  
A. K. Singh ◽  
E. W. Banister

The effect of 6-hydroxydopamine (6-OHDA) upon brain and blood catecholamines, ammonia, and amino acids has been studied in rats subjected to increasing doses of the drug. Time dependent effects after injection have also been studied. Systemically injected 6-OHDA significantly, acutely reduced brain adrenaline (A), noradrenaline (NA), total catecholamines (TC), γ-aminobutyric acid (GABA), and glutamic acid (Glu); concomitantly brain ammonia (NH3) increased. In blood, NA and TC were reduced and A and NH3 increased. The changes in brain monoamines are surprising since it has been reported that 6-OHDA does not cross the blood-brain barrier. We have proposed that these changes result from a general stress response or a reflex peripheral sympathetic response to falling blood pressure which in some manner communicates to the central nervous system. As the dose of 6-OHDA increased, brain NH3 increased and Glu decreased. A similar effect was seen from a single dose as the time after injection for sampling brain and blood constituents increased. Blood ammonia increases without change in Glu, glutamine, or asparagine. The source of NH3 may be from deamination of adenine nucleotide or catechols released from nerve terminals under the abnormal stimulus of 6-OHDA.


Sign in / Sign up

Export Citation Format

Share Document