scholarly journals Narrow Genetic Diversity of Wolbachia Symbionts in Acrididae Grasshopper Hosts (Insecta, Orthoptera)

2022 ◽  
Vol 23 (2) ◽  
pp. 853
Author(s):  
Yury Ilinsky ◽  
Mary Demenkova ◽  
Roman Bykov ◽  
Alexander Bugrov

Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B are predominant in arthropods, especially in insects, and supergroup F seems to rank third. Host taxa have been studied very unevenly for Wolbachia symbionts, and here, we turn to one of largely unexplored insect families: Acrididae. On the basis of five genes subject to multilocus sequence typing, we investigated the incidence and genetic diversity of Wolbachia in 41 species belonging three subfamilies (Gomphocerinae, Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan, Tajikistan, Russia, and Japan, making 501 specimens in total. Our results revealed a high incidence and very narrow genetic diversity of Wolbachia. Although only the strains belonging to supergroups A and B are commonly present in present, the Acrididae hosts here proved to be infected with supergroups B and F without A-supergroup variants. The only trace of an A-supergroup lineage was noted in one case of an inter-supergroup recombinant haplotype, where the ftsZ gene came from supergroup A, and the others from supergroup B. Variation in the Wolbachia haplotypes in Acrididae hosts within supergroups B and F was extremely low. A comprehensive genetic analysis of Wolbachia diversity confirmed specific features of the Wolbachia allelic set in Acrididae hosts. This result can help to elucidate the crucial issue of Wolbachia biology: the route(s) and mechanism(s) of Wolbachia horizontal transmission.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 534e-534 ◽  
Author(s):  
J. Staub ◽  
Felix Sequen ◽  
Tom Horejsi ◽  
Jin Feng Chen

Genetic variation in cucumber accessions from China was assessed by examining variation at 21 polymorphic isozyme loci. Principal component analysis of allelic variation allowed for the depiction of two distinct groupings of Chinese accessions collected in 1994 and 1996 (67 accessions). Six isozyme loci (Gpi, Gr, Mdh-2, Mpi-2, Pep-gl, and Pep-la) were important in elucidating these major groups. These groupings were different from a single grouping of Chinese 146 accessions acquired before 1994. Allelic variation in Chinese accessions allowed for comparisons with other accessions in the U.S. National Plant Germplasm System (U.S. NPGS) collection grouped by continent and sub-continent. When Chinese accessions taken collectively were compared with an array of 853 C. sativus U.S. NPGS accessions examined previously, relationships differed between accessions grouped by country or subcontinent. Data indicate that acquisition of additional Chinese and Indian cucumber accessions would be strategically important for increasing genetic diversity in the U.S. NPGS cucumber collection.


2018 ◽  
Vol 23 (2) ◽  
pp. 89
Author(s):  
Achmad Zamroni ◽  
Suwarso Suwarso

Mackerel scads (Decapterus macarellus) is a small widely distributed pelagic species in ocean. In 2013, monthly catch and abundance index of mackerel scads increased in western part of Sumatera waters. High exploitation of mackerel scads may lead to decrease stock due to the over exploitation. Stock information is very useful for calculating of the potential fish. Genetic analysis is one of the powerful tools to estimate fish stock quickly. Genetic diversity of mackerel scads in this study was analyzed using RFLP (Restriction Fragment Length Polymorphism) with AfaI, EcoR I, HapII, HinfI and TaqI restriction enzyme. The results showed that the lowest genetic diversity of mackerel scads was Labuan population. Kinship Labuan was also the furtherest stock compared to other populations. It can be concluded that the population of Labuan is derived from a different sub-species. The closest kinship was between Aceh and Sibolga stock.


2011 ◽  
Vol 72 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Leon Mejnartowicz

Twenty-eight isozymic loci were studied in the Beskid Mts., in four populations of common silver-fir (<em>Abies alba</em>): one in Beskid Makowski (BM) and three populations in Beskid Sądecki (BS). Their genetic variation and diversity were analyzed, and Nei's genetic distances between the populations were calculated. The results show that the geographical distance between the BM population and the three BS populations is reflected in genetic distances. The BM population is clearly distinct from the others. It has the lowest genetic diversity (<em>I</em> = <em>0.42</em>), percentage of polymorphic loci <em>(%PoL </em>= <em>64.29</em>) and number of rare alleles (<em>NoRa </em>= <em>5</em>). Besides, the BM population has the highest observed heterozygosity (<em>Ho </em>= <em>0.291</em>), which exceeds the expected heterozygosity (<em>He </em>= <em>0.254</em>), estimated on the basis of the Hardy-Weinberg Principle. On the contrary, BS populations are in the state of equilibrium, which is manifested, in similar values of <em>He </em>= <em>0.262 </em>and <em>Ho </em>= <em>0.264</em>.


2008 ◽  
Vol 190 (8) ◽  
pp. 2831-2840 ◽  
Author(s):  
Narjol González-Escalona ◽  
Jaime Martinez-Urtaza ◽  
Jaime Romero ◽  
Romilio T. Espejo ◽  
Lee-Ann Jaykus ◽  
...  

ABSTRACT Vibrio parahaemolyticus is an important human pathogen whose transmission is associated with the consumption of contaminated seafood. There is a growing public health concern due to the emergence of a pandemic strain causing severe outbreaks worldwide. Many questions remain unanswered regarding the evolution and population structure of V. parahaemolyticus. In this work, we describe a multilocus sequence typing (MLST) scheme for V. parahaemolyticus based on the internal fragment sequences of seven housekeeping genes. This MLST scheme was applied to 100 V. parahaemolyticus strains isolated from geographically diverse clinical (n = 37) and environmental (n = 63) sources. The sequences obtained from this work were deposited and are available in a public database (http://pubmlst.org/vparahaemolyticus ). Sixty-two unique sequence types were identified, and most (50) were represented by a single isolate, suggesting a high level of genetic diversity. Three major clonal complexes were identified by eBURST analysis. Separate clonal complexes were observed for V. parahaemolyticus isolates originating from the Pacific and Gulf coasts of the United States, while a third clonal complex consisted of strains belonging to the pandemic clonal complex with worldwide distribution. The data reported in this study indicate that V. parahaemolyticus is genetically diverse with a semiclonal population structure and an epidemic structure similar to that of Vibrio cholerae. Genetic diversity in V. parahaemolyticus appears to be driven primarily by frequent recombination rather than mutation, with recombination ratios estimated at 2.5:1 and 8.8:1 by allele and site, respectively. Application of this MLST scheme to more V. parahaemolyticus strains and by different laboratories will facilitate production of a global picture of the epidemiology and evolution of this pathogen.


2007 ◽  
Vol 26 (3) ◽  
pp. 201-205
Author(s):  
Yan-Qiu Chen ◽  
Xiao-Fan Guo ◽  
Chang-Tian Li ◽  
Yu Li

Genetic Analysis ofInonotus ObliquusStrains by RAPDRAPD profiling of eightInonotus obliquusstrains isolated from sclerotia collected from different areas of China was conducted to determine the genetic variability within this important medicinal fungus and to better define relationships between the genotype and geographical origins of isolation. Twelve 10-mer primers generated a total of 167 stable and reproducible DNA fragments, of which 101 (60.5%) were polymorphic. DNA fingerprints revealed genetic diversity among the strains tested, but there was the little intraspecific difference between the fingerprints of individual strains. A phenogram constructed based on UPGMA analysis of genetic distances calculated from RAPD fragment data identified three distinct groupings: (1) BCX01 and BCX02, (2) JL01, JL02, JL03, JL04 and JL05, (3) HLJ01. Our data confirm that the genetic variability among different strains may be a useful ancillary tool for identifyingl. obliquussclerotia of different geographical origins.


1994 ◽  
Vol 74 (4) ◽  
pp. 671-673 ◽  
Author(s):  
P. L. Dyck

Accession 8404 of Triticum turgidum ssp. dicoccoides was shown to have excellent resistance to leaf rust. Genetic analysis of the F3 of 8404 and RL6089, a leaf rust susceptible durum, indicated that 8404 had three genes for leaf rust resistance. Two of these genes were transferred to hexaploid wheat (Thatcher) by a series of backcrosses. One of the genes transferred was the same as Lr33 (RL6057). The second gene, which gives a fleck reaction to avirulent P. recondita races, appears to be fully incorporated into the hexaploid where it segregated to fit a one-gene ratio. Backcross lines with this gene give excellent resistance to leaf rust, although race MBG is virulent to this gene. This may be a previously unidentified leaf rust resistance gene and should increase the genetic diversity available for wheat breeders. Key words:Triticum aestivum, wheat, Triticum turgidum ssp. dicoccoides, leaf rust resistance


2006 ◽  
Vol 72 (5) ◽  
pp. 3309-3313 ◽  
Author(s):  
Alfred Dieudonn� Kinana ◽  
Eric Cardinale ◽  
Fatou Tall ◽  
Ibrahim Bahsoun ◽  
Jean-Marie Sire ◽  
...  

ABSTRACT We used the multilocus sequence typing (MLST) method to evaluate the genetic diversity of 46 Campylobacter jejuni isolates from chickens and to determine the link between quinolone resistance and sequence type (ST). There were a total of 16 ST genotypes, and the majority of them belonged to seven clonal complexes previously identified by using isolates from human disease. The ST-353 complex was the most common complex, whereas the ST-21, ST-42, ST-52, and ST-257 complexes were less well represented. The resistance phenotype varied for each ST, and the Thr-86-Ile substitution in the GyrA protein was the predominant mechanism of resistance to quinolone. Nine of the 14 isolates having the Thr-86-Ile substitution belonged to the ST-353 complex. MLST showed that the emergence of quinolone resistance is not related to the diffusion of a unique clone and that there is no link between ST genotype and quinolone resistance. Based on silent mutations, different variants of the gyrA gene were shown to exist for the same ST. These data provide useful information for understanding the epidemiology of C. jejuni in Senegal.


2005 ◽  
Vol 43 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Isabelle Vernez ◽  
Philippe Hauser ◽  
Marco V. Bernasconi ◽  
Dominique S. Blanc

Sign in / Sign up

Export Citation Format

Share Document