scholarly journals Validating Reference Gene Expression Stability in Human Ovarian Follicles, Oocytes, Cumulus Cells, Ovarian Medulla, and Ovarian Cortex Tissue

2022 ◽  
Vol 23 (2) ◽  
pp. 886
Author(s):  
Jesús Cadenas ◽  
Susanne Elisabeth Pors ◽  
Dmitry Nikiforov ◽  
Mengxue Zheng ◽  
Cristina Subiran ◽  
...  

Human ovarian cells are phenotypically very different and are often only available in limited amounts. Despite the fact that reference gene (RG) expression stability has been validated in oocytes and other ovarian cells from several animal species, the suitability of a single universal RG in the different human ovarian cells and tissues has not been determined. The present study aimed to validate the expression stability of five of the most used RGs in human oocytes, cumulus cells, preantral follicles, ovarian medulla, and ovarian cortex tissue. The selected genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-2-microglobulin (B2M), large ribosomal protein P0 (RPLP0), beta-actin (ACTB), and peptidylprolyl isomerase A (PPIA). Overall, the stability of all RGs differed among ovarian cell types and tissues. NormFinder identified ACTB as the best RG for oocytes and cumulus cells, and B2M for medulla tissue and isolated follicles. The combination of two RGs only marginally increased the stability, indicating that using a single validated RG would be sufficient when the available testing material is limited. For the ovarian cortex, depending on culture conditions, GAPDH or ACTB were found to be the most stable genes. Our results highlight the importance of assessing RGs for each cell type or tissue when performing RT-qPCR analysis.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiyu Chen ◽  
Zhenzhen Bao ◽  
Yanli Huang ◽  
Zhenglong Wang ◽  
Yucheng Zhao

Quantitative real-time PCR (qPCR) has become a widely used approach to analyze the expression level of selected genes. However, owing to variations in cell types and drug treatments, a suitable reference gene should be selected according to special experimental design. In this study, we investigated the expression level of ten candidate reference genes in hepatoma carcinoma cell (HepG2) and human hepatocyte cell line (L02) treated with ethanol (EtOH), hydrogen peroxide (H2O2), acetaminophen (APAP), and carbon tetrachloride (CCl4), respectively. To analyze raw cycle threshold values (Cp values) from qPCR run, three reference gene validation programs, including Bestkeeper, geNorm, and NormFinder, were used to evaluate the stability of ten candidate reference genes. The results showed that TATA-box binding protein (TBP) and tubulin beta 2a (TUBB2a) presented the highest stability for normalization under different treatments and were regarded as the most suitable reference genes of HepG2 and L02. In addition, this study not only identified the most stable reference genes of each treatment, but also suggested that β-actin (ACTB), glyceraldehade-3-phosphate dehydrogenase (GAPDH), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), and beta-2 microglobulin (B2M) were the least stable reference genes in HepG2 and L02. This work was the first report to systematically explore the stability of reference genes in injured models of HepG2 and L02.


2020 ◽  
Author(s):  
Kensuke Okamura ◽  
Yusuke Inagaki ◽  
Takeshi K. Matsui ◽  
Masaya Matsubayashi ◽  
Tomoya Komeda ◽  
...  

AbstractReverse transcription quantitative PCR (RT-qPCR) is used to quantify gene expression and require standardization with reference genes. We sought to identify the reference genes best suited for experiments that induce osteogenic differentiation from human induced pluripotent stem (iPS) cells. They were cultured in an undifferentiated maintenance medium and after confluence, further cultured in an osteogenic differentiation medium for 28 days. RT-qPCR was performed on undifferentiation markers, osteoblast and osteocyte differentiation markers, and reference gene candidates. The expression stability of each reference gene candidate was ranked using four algorithms. General rankings identified TATA box binding protein (TBP) in the first place, followed by transferrin receptor (TFRC), ribosomal protein large P0 (RPLP0), and finally, beta-2-microglobulin (B2M), which was revealed as the least stable. Interestingly, universally used GAPDH and ACTB were found to be unsuitable. Our findings strongly suggest a need to evaluate the expression stability of reference gene candidates for each experiment.


2020 ◽  
Vol 53 ◽  
pp. 101611 ◽  
Author(s):  
Alexander P. Schwarz ◽  
Daria A. Malygina ◽  
Anna A. Kovalenko ◽  
Alexander N. Trofimov ◽  
Aleksey V. Zaitsev

2010 ◽  
Vol 22 (9) ◽  
pp. 49
Author(s):  
L. Pacella ◽  
D. Zander-Fox ◽  
T. Hussein ◽  
T. Fullston ◽  
M. Lane

Maternal age and reduced AMH levels affect the follicular environment and consequently oocyte viability. The Sirtuin family of protein deacetylases are able to regulate various cellular functions involved in the ageing process in other tissues. In particular, SIRT3 is related to longevity in several cell types and regulates mitochondrial function, however, its presence and role in ovarian cells remains unknown. This study therefore, investigated the presence of SIRT3 in granulosa and cumulus cells, from patients undergoing IVF, and determined the impact of maternal age and low AMH on SIRT3 levels. Granulosa and cumulus cells were collected from women (n = 36), after informed consent, and classified into 3 groups; A (<35 years, normal AMH), B (>40 years (advanced maternal age), normal AMH) and C (<35 years, low AMH). The presence of SIRT3 was determined by q-PCR (expressed as fold-change) or immunohistochemistry. SIRT3 was present in the ovarian cells of all patients analysed. SIRT3 gene expression was reduced in granulosa cells from women with low AMH (0.67 ± 0.17) compared to women with normal AMH (1.00 ± 0.23; P < 0.05). In cumulus cells, levels were reduced with advanced maternal age (0.81 ± 0.08) compared to women <35 years (1.00 ± 0.22; P < 0.05). SIRT3 protein co-localised with mitochondria in the ovarian cells, confirming previous findings for other cell types. In comparison to women <35 years with normal AMH, image analysis determined that SIRT3 protein levels were significantly reduced in the granulosa and cumulus cells from women of advanced maternal age by 21.4% and 31.8% and in women with low AMH by 34.1% and 47.2% respectively. This is the first study to demonstrate SIRT3 presence in human ovarian cells. The observation that SIRT3 levels are altered by advanced maternal age or low AMH (reduced ovarian reserve) implicate its role in ovarian ageing and plausibly in the decrease in oocyte viability observed in these women.


BioTechniques ◽  
2005 ◽  
Vol 39 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Claudina Angela Pérez-Novo ◽  
Cindy Claeys ◽  
Frank Speleman ◽  
Paul Van Cauwenberge ◽  
Claus Bachert ◽  
...  

Author(s):  
Sylvie Polak-Charcon ◽  
Mehrdad Hekmati ◽  
Yehuda Ben Shaul

The epithelium of normal human colon mucosa “in vivo” exhibits a gradual pattern of differentiation as undifferentiated stem cells from the base of the crypt of “lieberkuhn” rapidly divide, differentiate and migrate toward the free surface. The major differentiated cell type of the intestine observed are: absorptive cells displaying brush border, goblet cells containing mucous granules, Paneth and endocrine cells containing dense secretory granules. These different cell types are also found in the intestine of the 13-14 week old embryo.We present here morphological evidence showing that HT29, an adenocarcinoma of the human colon cell line, can differentiate into various cell types by changing the growth and culture conditions and mimic morphological changes found during development of the intestine in the human embryo.HT29 cells grown in tissue-culture dishes in DMEM and 10% FCS form at late confluence a multilayer of morphologically undifferentiated cell culture covered with irregular microvilli, and devoid of tight junctions (Figs 1-3).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 478
Author(s):  
Martina Cotena ◽  
Mélanie Auffan ◽  
Virginie Tassistro ◽  
Noémie Resseguier ◽  
Jérôme Rose ◽  
...  

Benzo(a)pyrene (BaP) is a recognized reprotoxic compound and the most widely investigated polycyclic aromatic hydrocarbon in ambient air; it is widespread by the incomplete combustion of fossil fuels along with cerium dioxide nanomaterials (CeO2 NMs), which are used in nano-based diesel additives to decrease the emission of toxic compounds and to increase fuel economy. The toxicity of CeO2 NMs on reproductive organs and cells has also been shown. However, the effect of the combined interactions of BaP and CeO2 NMs on reproduction has not been investigated. Herein, human and rat gametes were exposed in vitro to combusted CeO2 NMs or BaP or CeO2 NMs and BaP in combination. CeO2 NMs were burned at 850 °C prior to mimicking their release after combustion in a diesel engine. We demonstrated significantly higher amounts of DNA damage after exposure to combusted CeO2 NMs (1 µg·L−1) or BaP (1.13 µmol·L−1) in all cell types considered compared to unexposed cells. Co-exposure to the CeO2 NMs-BaP mixture induced additive DNA damage in sperm and cumulus cells, whereas no additive effect was observed in rat oocytes. This result could be related to the structural protection of the oocyte by cumulus cells and to the oocyte’s efficient system to repair DNA damage compared to that of cumulus and sperm cells.


Sign in / Sign up

Export Citation Format

Share Document