scholarly journals Time-Resolved Gene Expression Analysis Monitors the Regulation of Inflammatory Mediators and Attenuation of Adaptive Immune Response by Vitamin D

2022 ◽  
Vol 23 (2) ◽  
pp. 911
Author(s):  
Andrea Hanel ◽  
Carsten Carlberg

Peripheral blood mononuclear cells (PBMCs) belong to the innate and adaptive immune system and are highly sensitive and responsive to changes in their systemic environment. In this study, we focused on the time course of transcriptional changes in freshly isolated human PBMCs 4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Taking all four time points together, 662 target genes were identified and segregated either by time of differential gene expression into 179 primary and 483 secondary targets or by driver of expression change into 293 direct and 369 indirect targets. The latter classification revealed that more than 50% of target genes were primarily driven by the cells' response to ex vivo exposure than by the nuclear hormone and largely explained its down-regulatory effect. Functional analysis indicated vitamin D’s role in the suppression of the inflammatory and adaptive immune response by down-regulating ten major histocompatibility complex class II genes, five alarmins of the S100 calcium binding protein A family and by affecting six chemokines of the C-X-C motif ligand family. Taken together, studying time-resolved responses allows to better contextualize the effects of vitamin D on the immune system.

Author(s):  
Anika Bongaarts ◽  
Caroline Mijnsbergen ◽  
Jasper J. Anink ◽  
Floor E. Jansen ◽  
Wim G. M. Spliet ◽  
...  

AbstractTuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


2021 ◽  
Author(s):  
Anika Bongaarts ◽  
Caroline Mijnsbergen ◽  
Jasper J. Anink ◽  
Floor E. Jansen ◽  
Wim G.M. Spliet ◽  
...  

Abstract Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Ferreira-Gomes ◽  
Andrey Kruglov ◽  
Pawel Durek ◽  
Frederik Heinrich ◽  
Caroline Tizian ◽  
...  

AbstractThe pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-β, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-β. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-β, and is distracted from itself.


2021 ◽  
Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Laurence Don Wai Luu ◽  
Shaojin Chen ◽  
Jin Fu ◽  
...  

CoronaVac (Sinovac), an inactivated vaccine for SARS-CoV-2, has been widely used for immunization. However, analysis of the underlying molecular mechanisms driving CoronaVac-induced immunity is still limited. Here, we applied a systems biology approach to understand the mechanisms behind the adaptive immune response to CoronaVac in a cohort of 50 volunteers immunized with 2 doses of CoronaVac. Vaccination with CoronaVac led to an integrated immune response that included several effector arms of the adaptive immune system including specific IgM/IgG, humoral response and other immune response, as well as the innate immune system as shown by complement activation. Metabolites associated with immunity were also identified implicating the role of metabolites in the humoral response, complement activation and other immune response. Networks associated with the TCA cycle and amino acids metabolic pathways, such as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glycine, serine and threonine metabolism were tightly coupled with immunity. Critically, we constructed a multifactorial response network (MRN) to analyze the underlying interactions and compared the signatures affected by CoronaVac immunization and SARS-CoV-2 infection to further identify immune signatures and related metabolic pathways altered by CoronaVac immunization. These results suggest that protective immunity against SARS-CoV-2 can be achieved via multiple mechanisms and highlights the utility of a systems biology approach in defining molecular correlates of protection to vaccination.


2022 ◽  
Vol 12 ◽  
Author(s):  
Elisa Pesce ◽  
Nicola Manfrini ◽  
Chiara Cordiglieri ◽  
Spartaco Santi ◽  
Alessandra Bandera ◽  
...  

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.


2021 ◽  
Author(s):  
Weam Saad Al-Hamadany

The human body has many mechanisms to resist invaders like pathogenic bacteria to avoid harm according to the living creature’s law “survival for the best”. On the opposite; Salmonella as pathogenic bacteria have many weapons that they utilize to invade the human body. The resistance mechanisms expressed by the human body are called immunity which represented by the immune system that has many different types of resistance processes, either specific (adaptive immune response) or non-specific (Innate Immune Response) against certain pathogenic invaders. As far as these processes are strong they will be enough to avoid infections occurrence, otherwise, the human body will get infected with Salmonella, be ill, show the disease symptoms, transmit the disease to others, and may become a carrier for the pathogen according to many circumstances. Prevention is still stood the most effective way to avoid getting infected with Salmonella by personal hygiene or suitable vaccination if available.


2019 ◽  
Author(s):  
Wenfa Ng

Snippets of virus that infect humans have been shown to be incorporated into the human genome. Could such virus snippets provide a form of adaptive immunity similar to that offered by CRISPR to bacterial cells? To answer the question, RNA-seq could be used to provide a broad view of the RNA transcribed from DNA in the genome. Using known genome sequence of viruses that infect humans as template, reads obtained from RNA-seq would be profiled for virus snippets integrated into human genome and subsequently transcribed as part of an adaptive immune system. Subsequently, viruses corresponding to the virus snippets in human genome would be used to infect human cell lines to obtain direct evidence of how virus snippets mediate an adaptive immune response at the cellular level. Specifically, successful defence of the cell by virus snippets triggering an adaptive immune response would manifest as viable cells compared to lysed cells unable to mount an immune response. Following demonstration of cell viability under viral challenge, in vitro biochemical assays using cell lysate would interrogate the specific proteins and enzymes that mediate possible cutting of the foreign DNA or RNA. To this end, beads immobilized with virus snippets would serve as bait for binding to complementary viral DNA or RNA as well as potential endogenous endonuclease protein. Following precipitation and recovery of beads, possible endonuclease that bind to both viral DNA or RNA and virus snippets immobilized on beads would be isolated through gel electrophoresis and subsequently purified. Purified endonuclease would be assayed for activity against a variety of nucleic acids (both DNA and RNA) from various sources with and without added virus snippets. This provides important information on substrate range and specificity of the potential endonuclease. Amino acid sequencing of the purified endonuclease would help downstream bioinformatic search for candidate protein in the human genome. Finally, cryo-electron microscopy could help determine the structure of the endonuclease in complex with viral nucleic acids and virus snippets. Such structural information would provide more insights into mechanistic details describing the binding and cleavage of viral DNA or RNA in a CRISPR-like adaptive immune response in human cells. Overall, tantalizing clues have emerged that a CRISPR-like adaptive immune response may exist in human cells for defending against viral attack. Combination of cell biological, biochemical and structural tools could lend insights into the potential endonuclease that mediate double strand break of foreign DNA or RNA using virus snippets transcribed from the human genome as guide RNA. If demonstrated to be true for a variety of human viruses across different cell lines, the newly discovered viral defence mechanism in human cells hold important implications for understanding the adoption and evolution of CRISPR in eukaryotic cells.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 816 ◽  
Author(s):  
Katie J. Knapek ◽  
Hanah M. Georges ◽  
Hana Van Campen ◽  
Jeanette V. Bishop ◽  
Helle Bielefeldt-Ohmann ◽  
...  

Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Betty Diamond ◽  
Bruce T. Volpe ◽  
Sonya VanPatten ◽  
Yousef Al Abed

Abstract The response to viral infection generally includes an activation of the adaptive immune response to produce cytotoxic T cells and neutralizing antibodies. We propose that SARS-CoV-2 activates the innate immune system through the renin-angiotensin and kallikrein-bradykinin pathways, blocks interferon production and reduces an effective adaptive immune response. This model has therapeutic implications.


Sign in / Sign up

Export Citation Format

Share Document