scholarly journals Comparison of Carbonic Anhydrases for CO2 Sequestration

2022 ◽  
Vol 23 (2) ◽  
pp. 957
Author(s):  
Franziska Steger ◽  
Johanna Reich ◽  
Werner Fuchs ◽  
Simon K.-M. R. Rittmann ◽  
Georg M. Gübitz ◽  
...  

Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg−1 AwCA) and PmCA (1748 WAU mg−1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.

2017 ◽  
Vol 103 ◽  
pp. 05016 ◽  
Author(s):  
A. Faisal Alshalif ◽  
J.M. Irwan ◽  
N. Othman ◽  
M.M. Zamer ◽  
L.H. Anneza

2007 ◽  
Vol 21 (6) ◽  
pp. 3334-3340 ◽  
Author(s):  
Zhongxian Cheng ◽  
Youhua Ma ◽  
Xin Li ◽  
Wei-Ping Pan ◽  
Zhiming Zhang

2016 ◽  
Vol 101 ◽  
pp. 408-415 ◽  
Author(s):  
Loretta Gratani ◽  
Rosangela Catoni ◽  
Giacomo Puglielli ◽  
Laura Varone ◽  
Maria Fiore Crescente ◽  
...  

Author(s):  
Dandina N. Rao ◽  
Zaki A. Bassiouni

Abstract The five-year long United Nations campaign for the reduction of greenhouse gases in the atmosphere culminated in the Kyoto protocol of 1997. Since this Kyoto conference attended by nearly 160 nations, sequestration of carbon dioxide from industrial flue gases and its storage and/or utilization have been receiving significantly enhanced attention. According to the US Department of Energy, very little research and development has been done in the United States on promising options that might address CO2 capture, reuse and storage technologies. An exception to this is the utilization of CO2 for enhanced oil recovery. Over a decade of industrial experience has accumulated at more than 70 enhanced oil recovery sites around the world where CO2 is injected to improve oil recovery from waterflooded reservoirs. The accumulated experience in the US, where about 32 million tons of CO2 per year are being utilized in EOR, has amply demonstrated that the retention of CO2 in the reservoir is very high when the original pressure is not exceeded. Thus, CO2 injected enhanced oil recovery presents itself as a mature field-tested technology for sequestering CO2 at a low net cost due to the revenues from recovered oil and gas. Much of the CO2-EOR experience to date in the US involves the use of high-purity carbon dioxide for conducting miscible floods in conventional crude oil reservoirs. Due to the high costs associated with supplying high-purity CO2 to the reservoir, this process has seen limited commercial success. However, the past research at LSU and elsewhere has amply demonstrated that impure CO2 was also effective in enhancing oil recoveries. This makes the abundant supply of flue gases from fossil-fuel combustion operations a viable and cost-effective option without the need for separating CO2 from the flue gas mixtures. This paper attempts to review and synthesize the literature dealing with geologic sequestration of CO2 in EOR projects. The available data are analyzed both from EOR and CO2 sequestration points of view.


Author(s):  
Zarina Itam ◽  
Hafiz Zawawi ◽  
Yuovendra Sivaganese ◽  
Salmia Beddu ◽  
Nur Liyana Mohd Kamal

In recent years, the production of cement has grown globally in a very rapid manner due to the modernization of the world we live in, and after fossil fuels and land-use change, cement production is the third-largest source of anthropogenic emissions of carbon dioxide, CO2. Cement being the primary binding material for concrete and with the prospects for the concrete industry continues to grow so will the emissions of CO2. Hence, a method to reduce the CO2 production while keeping up with the progression of the concrete industry is very crucial in current times. This is where CO2 sequestration comes in. It is a process where CO2 is converted into a mineral which will then be trapped into the concrete forever. Required data to carry out the research between CO2 sequestered concrete and concrete without CO2 have been observed, obtained and tabulated as necessary. These data are then used to compare the concrete samples with one another and also prove the theoretical effects of CO2 exposure to concrete. Hence, experimental results on the compressive strength of the concrete samples for 7, 14 and 28 days has also been tabulated, graphed and further disputed. The objective of this research is mainly to determine the compressive strength of CO2 sequestered concrete in comparison with concrete without CO2 in order to decrease the effects the concrete industry has on the environment. The compressive strength of concrete samples with sequestration of CO2 gas is expected to be higher than of the concrete without CO2.


Sign in / Sign up

Export Citation Format

Share Document