scholarly journals Engineering of Injectable Antibiotic-laden Fibrous Microparticles Gelatin Methacryloyl Hydrogel for Endodontic Infection Ablation

2022 ◽  
Vol 23 (2) ◽  
pp. 971
Author(s):  
Juliana S. Ribeiro ◽  
Eliseu A. Münchow ◽  
Ester A. F. Bordini ◽  
Nathalie S. Rodrigues ◽  
Nileshkumar Dubey ◽  
...  

This study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey’s test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1220
Author(s):  
Giovanni Mergoni ◽  
Maddalena Manfredi ◽  
Pio Bertani ◽  
Tecla Ciociola ◽  
Stefania Conti ◽  
...  

Enterococcus faecalis is a common cause of biofilm-associated opportunistic infections, which are often difficult to treat. The formation of E. faecalis biofilms on the dentinal walls of the root canal is frequently the cause of endodontic treatment failure and secondary apical periodontitis. In a preliminary work, two recognized antifungal peptides, KP and L18R, showed antibacterial activity against planktonic E. faecalis cells at micromolar concentrations. Moreover, L18R proved to reduce the biomass in the early stage of E. faecalis biofilm development on polystyrene plates, while a qualitative biofilm inhibition was demonstrated on hydroxyapatite disks by confocal laser scanning microscopy (CLSM). The aim of this study was to better characterize the effect of both peptides on E. faecalis biofilm. A reduction in metabolic activity after peptide treatment was detected by Alamar Blue assay, while a remarkable impairment in the architecture of E. faecalis biofilms on hydroxyapatite disks, along with a significant reduction in viable bacteria, was caused mostly by L18R, as assessed by CLSM and scanning electron microscopy. The lack of cytotoxicity of the investigated peptides against L929 murine fibroblasts was also determined. Obtained results suggest L18R as a promising candidate for the development of new strategies for endodontic infection control.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xinyi Kuang ◽  
Tao Yang ◽  
Chenzi Zhang ◽  
Xian Peng ◽  
Yuan Ju ◽  
...  

Objectives. Disruption of microbial biofilms is an effective way to control dental caries. Drug resistance and side effects of the existing antimicrobials necessitate the development of novel antibacterial agents. The current study was aimed at investigating the antibacterial activities of the repurposed natural compound napabucasin against oral streptococci. Methods. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibition concentration, and minimum biofilm reduction concentration of Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis were examined by a microdilution method. Cytotoxicity of napabucasin against human oral keratinocytes, human gingival epithelia, and macrophage RAW264.7 was evaluated by CCK8 assays. The dead/live bacterium and exopolysaccharide in the napabucasin-treated multispecies biofilms were evaluated by confocal laser scanning microscopy. Microbial composition within the napabucasin-treated biofilms was further visualized by fluorescent in situ hybridization and qPCR. And the cariogenicity of napabucasin-treated biofilms was evaluated by transverse microradiography. Results. Napabucasin exhibited good antimicrobial activity against oral streptococcal planktonic cultures and biofilms but with lessened cytotoxicity as compared to chlorhexidine. Napabucasin reduced the cariogenic S. mutans and increased the proportion of the commensal S. gordonii in the multispecies biofilms. More importantly, napabucasin significantly reduced the demineralization capability of biofilms on tooth enamels. Conclusion. Napabucasin shows lessened cytotoxicity and comparable antimicrobial effects to chlorhexidine. Repurposing napabucasin may represent a promising adjuvant for the management of dental caries.


Author(s):  
S. N. Sarah Shafiei ◽  
K. Ahmad ◽  
N. F. M. Ikhsan ◽  
S. I. Ismail ◽  
K. Sijam

Abstract Xanthomonas oryzae pv. oryzae (Xoo), a pathogen responsible for rice bacterial leaf blight, produces biofilm to protect viable Xoo cells from antimicrobial agents. A study was conducted to determine the potency of Acacia mangium methanol (AMMH) leaf extract as a Xoo biofilm inhibitor. Four concentrations (3.13, 6.25, 9.38, and 12.5 mg/mL) of AMMH leaf extract were tested for their ability to inhibit Xoo biofilm formation on a 96-well microtiter plate. The results showed that the negative controls had the highest O.D. values from other treatments, indicating the intense formation of biofilm. This was followed by the positive control (Streptomycin sulfate, 0.2 mg/mL) and AMMH leaf extract at concentration 3.13 mg/mL, which showed no significant differences in their O.D. values (1.96 and 1.57, respectively). All other treatments at concentrations of 6.25, 9.38, and 12.5 mg/mL showed no significant differences in their O.D. values (0.91, 0.79, and 0.53, respectively). For inhibition percentages, treatment with concentration 12.5 mg/mL gave the highest result (81.25%) followed by treatment at concentrations 6.25 and 9.38 mg/mL that showed no significant differences in their inhibition percentage (67.75% and 72.23%, respectively). Concentration 3.13 mg/mL resulted in 44.49% of biofilm inhibition and the positive control resulted in 30.75% of biofilm inhibition. Confocal laser scanning microscopy (CLSM) analysis of Xoo biofilm inhibition and breakdown showed the presence of non-viable Xoo cells and changes in aggregation size due to increase in AMMH leaf extract concentration. Control slides showed the absence of Xoo dead cells.


2012 ◽  
Vol 79 (3) ◽  
pp. 1065-1067 ◽  
Author(s):  
María-Carmen Muñoz-Egea ◽  
María García-Pedrazuela ◽  
Ignacio Mahillo ◽  
María Jesús García ◽  
Jaime Esteban

ABSTRACTThe structure of biofilms formed by seven nonpigmented rapidly growing mycobacteria, including saprophytes and opportunistic species, was analyzed. Analysis included amount of covered surface, thickness, cell viability, and presence of intrinsic autofluorescence at different times using confocal laser scanning microscopy and image analysis. Autofluorescence was detected inside and outside cells of all mycobacteria.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 542
Author(s):  
Amr Shehabeldine ◽  
Hany El-Hamshary ◽  
Mohamed Hasanin ◽  
Ayman El-Faham ◽  
Mosaed Al-Sahly

Fungal biofilms have caused several medical problems, resulting in significant morbidity and mortality as well as poor response to antifungal drugs. The current study was designed to evaluate the enhancement of antifungal and anti-biofilm activity of Griseofulvin-loaded green nanocomposite-based biopolymers (Ge-Nco) of glycogen and gelatin against different strains of pathogenic Candida species. The prepared Ge-Nco was characterized using Fourier-transform infrared (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and transmission electron microscope (TEM). In addition, the morphology of the mature biofilm and the inhibition of biofilm was monitored and visualized using confocal laser scanning microscopy (CLSM). The minimal inhibitory concentrations (MIC) and (IC50) of Griseofulvin alone and the prepared Ge-Nco against three different strains of Candida sp. were determined according to Clinical and Laboratory Standards Institute (CLSI) method. The effects of Griseofulvin alone and Ge-Nco on the tested Candida sp. biofilm formation were determined by the crystal-violet staining protocol. The biofilm inhibition potential of Ge-Nco against the tested Candida sp. was detected and depicted under CLSM (2.5 D view). The findings depicted that Ge-Nco was prepared in nanometer size (10–23 nm). The observed minimum inhibitory concentration (MIC) of Griseofulvin alone and Ge-Nco against three different Candida sp. were found to be in range 49.9–99.8 μg/mL and 6.24–12.48 μg/mL, respectively. These results provide evidence for implementing efficient antivirulence approaches against three different Candida sp. that would be less likely to foster the emergence of resistance.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2211
Author(s):  
Do-Un Lee ◽  
Yeong Jin Park ◽  
Hwan Hee Yu ◽  
Suk-Chae Jung ◽  
Jung-Hee Park ◽  
...  

ε-Polylysine (ε-PL) is a safe food additive that is used in the food industry globally. This study evaluated the antimicrobial and antibiofilm activity of antibacterial peptides (ε-PL) against food poisoning pathogens detected in chicken (Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli). The results showed that minimum inhibitory concentrations (MICs) ranged between 0.031–1.0 mg/mL, although most bacterial groups (75%) showed MICs of 1.0 mg/mL. The reduction in the cell viability of pathogens due to ε-PL depended on the time and concentration, and 1/2 × MIC of ε-PL killed 99.99% of pathogens after 10 h of incubation. To confirm biofilm inhibition and degradation effects, crystal violet assay and confocal laser scanning microscopy (CLSM) were used. The biofilm formation rates of four bacterial groups (Salmonella, Listeria, E. coli, and multi-species bacteria) were 10.36%, 9.10%, 17.44%, and 21.37% at 1/2 × MIC of ε-PL, respectively. Additionally, when observed under a CLSM, ε-PL was found to induce biofilm destruction and bacterial cytotoxicity. These results demonstrated that ε-PL has the potential to be used as an antibiotic and antibiofilm material for chicken meat processing.


2019 ◽  
Vol 44 (6) ◽  
pp. E271-E278 ◽  
Author(s):  
MA Bottino ◽  
SMB Pereira ◽  
M Amaral ◽  
NVM Milhan ◽  
CA Pereira ◽  
...  

SUMMARY Objective: The aim of this study was to investigate the biofilm formation and cell viability of a polymer-infiltrated ceramic (PIC) and an yttria-stabilized polycrystalline zirconium dioxide ceramic (Y-TZP). The null hypothesis was that there would be no difference in biofilm formation and cell viability between the materials. Methods and Materials: Streptococcus mutans biofilm was analyzed with scanning electron microscopy (SEM), confocal laser scanning microscopy, and colony counting (colony-forming units/mL). The cell viability (fibroblasts) of both materials was measured with 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium) (MTT) test. Roughness measurements were also performed. Results: The PIC displayed higher roughness but showed similar colony-forming units and biovolume values to those of Y-TZP. SEM showed a higher amount of adhered fibroblasts on the PIC surface on the first day and similar amounts on both materials after seven days. Moreover, the materials were biocompatible with human fibroblasts. Conclusion: PIC and Y-TZP are biocompatible and present the same characteristics for biofilm formation; therefore, they are indicated for indirect restorations and implant abutments.


Sign in / Sign up

Export Citation Format

Share Document