scholarly journals GC/TOF-MS-Based Metabolomics Reveals Altered Metabolic Profiles in Wood-Feeding Termite Coptotermes formosanus Shiraki Digesting the Weed Mikania micrantha Kunth

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 927
Author(s):  
Wenjing Wu ◽  
Yahui Hou ◽  
Shijun Zhang ◽  
Yong Chen ◽  
Wenhui Zeng ◽  
...  

Effective approaches to exploiting the biomass of the abundant invasive weed Mikania micrantha Kunth are limited. Termites have been a focus of significant attention as mediators of biomass-processing owing to their ability to digest lignocellulose. Here, the GC/TOF-MS approach was employed to assess the effects of a diet composed of M. micrantha leaves on Coptotermes formosanus workers, with the growth performance of these workers also being assessed. The workers increased their dietary intake when fed M. micrantha leaves, with a concomitant gradual increase in mortality rate. A total of 62 differentially abundant metabolites and nine significantly affected pathways were found when comparing termites fed M. micrantha leaves to pinewood. Key metabolites, including carbohydrates, polyols, 4-hydroxyphenylacetic acid, and their related metabolic pathways, suggested that termites can digest and utilize M. micrantha-derived lignocellulose. However, changes in the tryptophan metabolism, tyrosine metabolism, and sphingolipid metabolism suggest an adverse effect of M. micrantha leaves on antioxidant activity and signal transduction in termites. Overall, this study identified the key metabolites and pathways associated with the response of these termites to dietary changes and the effect of M. micrantha on termites.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Nankun Qin ◽  
Yue Jiang ◽  
Wenjun Shi ◽  
Liting Wang ◽  
Lingbo Kong ◽  
...  

Hyperuricemia (HUA) as a metabolic disease is closely associated with metabolic disorders. The etiology and pathogenesis of HUA are not fully understood, so there is no radical cure so far. Metabolomics, a specialized study of endogenous small molecule substances, has become a powerful tool for metabolic pathway analysis of selected differential metabolites, which is helpful for initially revealing possible development mechanisms of various human diseases. Twenty HUA patients and 20 healthy individuals participated in the experiment, and ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was employed to investigate serum samples to find differential metabolites. The statistical techniques used were principal component analysis and orthogonal partial least-squares discriminant analysis. The differences in metabolomics results of samples after pretreatment with different solvents were compared, 38, 20, 26, 28, 33, 50, and 40 potential differential metabolites were found, respectively, in HUA patient samples, and each group involved different metabolic pathways. Repetitive metabolites were removed, 138 differential metabolites in HUA serum were integrated for analysis, and the human body was affected by 7 metabolic pathways of glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and α-linolenic acid metabolism. In this work, the metabolomics approach based on UPLC-Q-TOF/MS was employed to investigate serum metabolic changes in HUA patients, 138 potential differential metabolites related to HUA were identified, which provided associations of lipids, amino acids, fatty acids, organic acids, and nucleosides profiles of HUA individuals. Metabolic pathways involved in glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and a-linolenic acid metabolism shed light on the understanding of the etiology and pathogenesis process of HUA.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 443
Author(s):  
Young-Ah You ◽  
Soo-Yeon Hwang ◽  
Soo-Min Kim ◽  
Seojeong Park ◽  
Ga-In Lee ◽  
...  

Metabolites reflect the biochemical dynamics for the maintenance of pregnancy and parturition. UPLC-Q/TOF-MS and LC-MS/MS metabolomics were performed to identify and validate the plasma metabolomic signatures of preterm birth (PTB). We recruited pregnant women between 16 and 40 weeks 5 days gestational age at Ewha Womans Mokdong Hospital for a nested case-control study. In untargeted UPLC-Q/TOF-MS, score plots of partial least-squares discriminant analysis clearly separated the PTB group from the term birth (TB, n = 10; PTB, n = 11). Fifteen metabolites were significantly different between the two groups, as indicated by a variable importance in projection >1 and p < 0.05. Metabolic pathways involving retinol, linoleic acid, D-arginine, and D-ornithine were associated with PTB. Verification by LC-MS/MS focused on retinol metabolism (TB, n = 39; PTB, n = 20). Retinol levels were significantly reduced in PTB compared to TB, while retinal palmitate, all-trans-retinal, and 13-cis-retinoic acid (13cis-RA) significantly increased (p < 0.05). Retinol-binding protein levels were also elevated in PTB. Additionally, all-trans-retinal (AUC 0.808, 95% CI: 0.683–0.933) and 13cis-RA (AUC 0.826, 95% CI: 0.723–0.930) showed improved predictions for PTB-related retinol metabolites. This study suggests that retinoid metabolism improves the accuracy of PTB predictions and plays an important role in maintaining pregnancy and inducing early parturition.


PEDIATRICS ◽  
1961 ◽  
Vol 28 (3) ◽  
pp. 399-409
Author(s):  
John H. Menkes ◽  
George A. Jervis

An infant with seizures, spasticity, and failure in weight gain was shown to excrete p-hydroxyphenylpyruvic acid, p-hydroxyphenyllactic acid, and p-hydroxyphenylacetic acid, indicating the likelihood of an impairment in the oxidation of p-hydroxyphenylpyruvate. Institution of a phenylalanine-free diet coincided with marked clinical improvement and disappearance of the abnormal urinary metabolites. The cause of the temporary enzyme defect is discussed, and it is concluded that it represents a persistence into extrauterine life of the relative enzyme inactivity observed in fetal tissues.


2021 ◽  
Author(s):  
Lin Yang ◽  
Jinge Sun ◽  
Qiuting Ren ◽  
Xu Ma ◽  
Yaya Wang ◽  
...  

Abstract Background With the development of aquaculture, fish and shrimp diseases have been paid more and more attention in the world. How to improve the immunity of aquatic animals was an urgent problem to be solved. Duckweed (Lemnacecae), as a eukaryote, could be an ideal feedstock for the production of antimicrobial peptides. Result Penaeidins 3a (Pen 3a) from Litopenaeus vannamei was expressed under the control of CaMV-35S promoter in duckweed, Lemna turionifera 5511. Bacteriostatic test by Pen3a duckweed extract showed the antibacterial activity against Escherichia coli and Staphylococcus aureus. Transcriptome analysis of WT and Pen3a duckweed showed different results, and the protein metabolic process was the most up-regulated DEGs. In Pen 3a transgenic duckweed, the expression of sphingolipid metabolism and phagocytosis process-related genes have been significantly up-regulated. Quantitative proteomics suggested a remarkable difference in protein enrichment in metabolic pathways. Conclusion Our study provide a novel solution on aquaculture and water purification. The Pen 3a transgenic duckweed extraction inhibit the growth of gram-negative bacteria, gram-positive bacteria, which could be applied to control the bacteria in lake. The results could lay the foundation for the subsequent production of antibiotics.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 861 ◽  
Author(s):  
Yaping Hu ◽  
Ying Zhang ◽  
Jie Zhou ◽  
Guibing Wang ◽  
Qirong Guo

Phyllostachys edulis ‘Pachyloen’ can have a stalk wall thickness of up to 2.5 cm at a height of 1.3 m, which is 1.8 times that of normal Moso bamboo (Phyllostachys edulis); this serves as an excellent cultivar, comprising both wood and bamboo shoots. We collected bamboo shoot samples of Phyllostachys edulis ‘Pachyloen’ and Moso bamboo on a monthly basis from September to April and used transcriptome sequencing to explore the differences in their development. The results showed that there were 666–1839 Phyllostachys edulis ‘Pachyloen’-specific genes at different developmental stages enriched in 20 biological processes, 15 cellular components, 12 molecular functions, and 137 metabolic pathways, 52 of which were significant. Among these, 27 metabolic pathways such as tyrosine metabolism and their uniquely expressed genes were found to play important roles in the thickening of Phyllostachys edulis ‘Pachyloen’. This study provides insights into the mechanisms underlying the thickening of the culm wall of Phyllostachys edulis ‘Pachyloen’.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yanyan Xu ◽  
Yiwei Zhao ◽  
Jiabin Xie ◽  
Xue Sheng ◽  
Yubo Li ◽  
...  

Psoraleae Fructus is the dry and mature fruit of leguminous plant Psoralea corylifolia L., with the activity of warming kidney and enhancing yang, warming spleen, and other effects. However, large doses can cause liver and kidney toxicity. Therefore, it is necessary to evaluate the toxicity of Psoraleae Fructus systematically. Although traditional biochemical indicators and pathological tests have been used to evaluate the safety of drug, these methods lack sensitivity and specificity, so a fast and sensitive analytical method is urgently needed. In this study, an ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method was used to analyze the metabolic profiles of rat plasma. The changes of metabolites in plasma samples were detected by partial least squares-discriminant analysis (PLS-DA). Compared with the control group, after 7 days of administration, the pathological sections showed liver and kidney toxicity, and the metabolic trend was changed. Finally, 13 potential biomarkers related to the toxicity of Psoraleae Fructus were screened. The metabolic pathways involved were glycerol phospholipids metabolism, amino acid metabolism, energy metabolism, and so forth. The discovery of these biomarkers laid a foundation for better explaining the hepatotoxicity and nephrotoxicity of Psoraleae Fructus and provided a guarantee for its safety evaluation.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1792 ◽  
Author(s):  
Asma Ahmed AlGhamdi ◽  
Mohammed Razeeth Shait Mohammed ◽  
Mazin A. Zamzami ◽  
Abdulrahman L. Al-Malki ◽  
Mohamad Hasan Qari ◽  
...  

Thymoquinone (TQ), a naturally occurring anticancer compound extracted from Nigella sativa oil, has been extensively reported to possess potent anti-cancer properties. Experimental studies showed the anti-proliferative, pro-apoptotic, and anti-metastatic effects of TQ on different cancer cells. One of the possible mechanisms underlying these effects includes alteration in key metabolic pathways that are critical for cancer cell survival. However, an extensive landscape of the metabolites altered by TQ in cancer cells remains elusive. Here, we performed an untargeted metabolomics study using leukemic cancer cell lines during treatment with TQ and found alteration in approximately 335 metabolites. Pathway analysis showed alteration in key metabolic pathways like TCA cycle, amino acid metabolism, sphingolipid metabolism and nucleotide metabolism, which are critical for leukemic cell survival and death. We found a dramatic increase in metabolites like thymine glycol in TQ-treated cancer cells, a metabolite known to induce DNA damage and apoptosis. Similarly, we observed a sharp decline in cellular guanine levels, important for leukemic cancer cell survival. Overall, we provided an extensive metabolic landscape of leukemic cancer cells and identified the key metabolites and pathways altered, which could be critical and responsible for the anti-proliferative function of TQ.


Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 487
Author(s):  
Yu Ra Lee ◽  
Ki-Yong An ◽  
Justin Jeon ◽  
Nam Kyu Kim ◽  
Ji Won Lee ◽  
...  

Colorectal cancer is one of the most prevalent cancers in Korea and globally. In this study, we aimed to characterize the differential serum metabolomic profiles between pre-operative and post-operative patients with colorectal cancer. To investigate the significant metabolites and metabolic pathways associated with colorectal cancer, we analyzed serum samples from 68 patients (aged 20–71, mean 57.57 years). Untargeted and targeted metabolomics profiling in patients with colorectal cancer were performed using liquid chromatography-mass spectrometry. Untargeted analysis identified differences in sphingolipid metabolism, steroid biosynthesis, and arginine and proline metabolism in pre- and post-operative patients with colorectal cancer. We then performed quantitative target profiling of polyamines, synthesized from arginine and proline metabolism, to identify potential polyamines that may serve as effective biomarkers for colorectal cancer. Results indicate a significantly reduced serum concentration of putrescine in post-operative patients compared to pre-operative patients. Our metabolomics approach provided insights into the physiological alterations in patients with colorectal cancer after surgery.


Sign in / Sign up

Export Citation Format

Share Document