scholarly journals Evaluation of Natural and Factitious Food Sources for Pronematus ubiquitus on Tomato Plants

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1111
Author(s):  
Marcus V. A. Duarte ◽  
Dominiek Vangansbeke ◽  
Juliette Pijnakker ◽  
Rob Moerkens ◽  
Alfredo Benavente ◽  
...  

Pronematus ubiquitus (McGregor) is a small iolinid mite that is capable of establishing on tomato plants. Once established, this mite has been shown to control both tomato russet mite, Aculops lycopersici (Tryon) (Acari: Eriophyidae), and tomato powdery mildew (Oidium neolycopersici L. Kiss). In the present study, we explored the effects of a number of alternative food sources on the oviposition rate in the laboratory. First, we assessed the reproduction on food sources that P. ubiquitus can encounter on a tomato crop: tomato pollen and powdery mildew, along with tomato leaf and Typha angustifolia L. In a second laboratory experiment, we evaluated the oviposition rate on two prey mites: the astigmatid Carpoglyphus lactis L. (Acari: Carpoglyphidae) and the tarsonemid Tarsonemus fusarii Cooreman (Acari: Tarsonemidae). Powdery mildew and C. lactis did not support reproduction, whereas tomato pollen and T. fusarii did promote egg laying. However, T. angustifolia pollen resulted in a higher oviposition in both experiments. In a greenhouse trial on individual caged tomato plants, we evaluated the impact of pollen supplementation frequency on the establishment of P. ubiquitus. Here, a pollen addition frequency of every other week was required to allow populations of P. ubiquitus to establish.

Author(s):  
Marcus V. A. Duarte ◽  
Dominiek Vangansbeke ◽  
Juliette Pijnakker ◽  
Rob Moerkens ◽  
Alfredo Benavente ◽  
...  

Pronematus ubiquitus (McGregor) is a small iolinid mite that is capable of establishing on tomato plants. Once established, this mite has been shown to control both tomato russet mite, Aculops lycopersici (Tryon) (Acari: Eriophyidae) and tomato powdery mildew (Oidium neolycopersici L. Kiss). In the present study, we explored the nutritional value of various food sources in the laboratory. First, we assessed the reproduction of two food sources that P. ubiquitus can encounter on a tomato crop: tomato pollen and powdery mildew. In a second laboratory experiment, we evaluated the nutritional value of two types of prey mites: the astigmatid Carpoglyphus lactis L. (Acari: Carpoglyphidae) and the tarsonemid Tarsonemus fusarii (Acari: Tarsonemidae). Powdery mildew and C. lactis did not contribute to the reproduction, whereas tomato pollen and T. fusarii did allow egg-laying. However, Typha angustifolia pollen was a superior food source in both experiments. In a greenhouse trial on individual caged tomato plants, we evaluated the impact of pollen supplementation frequency on establishment of P. ubiquitus. Here, a pollen addition frequency of every other week was required to allow populations of P. ubiquitus to establish.


2006 ◽  
Vol 96 (9) ◽  
pp. 967-974 ◽  
Author(s):  
Yoshinori Matsuda ◽  
Hiroki Ikeda ◽  
Nobuyuki Moriura ◽  
Norio Tanaka ◽  
Kunihiko Shimizu ◽  
...  

In an attempt to physically protect greenhouse tomato plants from the powdery mildew fungus Oidium neolycopersici, we developed a new electrostatic spore precipitator in which a copper wire conductor is linked to an electrostatic generator and covered with a transparent acrylic cylinder (insulator). The conductor was negatively charged by the generator, and the electrostatic field created by the conductor was used to dielectrically polarize the insulator cylinder. The dielectrically polarized cylinder also produced an electrostatic force without a spark discharge. This force was directly proportional to the potential applied to the conductor and was used to attract conidia of the pathogen. The efficacy of this spore precipitator in protecting hydroponically cultured tomato plants from powdery mildew was evaluated in the greenhouse. The hydroponic culture troughs were covered with a cubic frame installed with the spore precipitator, and the disease progress on precipitator-guarded and unguarded seedlings was traced after the conidia were disseminated mechanically from inoculum on tomato plants. Seedlings in the guarded troughs remained uninfected during the entire experiment, in spite of rapid spread of the disease to all leaves of the unguarded seedlings.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 288-288 ◽  
Author(s):  
X.-M. Liu ◽  
Y.-X. Wei ◽  
H. Zhang ◽  
F.-X. Zhou ◽  
J.-J. Pu

Croton (Codiaeum variegatum (Linn.) var. pictum (Lodd.)) is an ornamental plant commonly grown in southern China. In March 2014, severe powdery mildew infections were observed on crotons in gardens of Hainan University (20.1°N and 110.3°E), Haikou, Hainan province. Disease incidence was estimated in a random batch of 100 plants in three replicates, with the average value approaching 80%. Symptoms first appeared as white circular patches on the adaxial surface and expanded to the abaxial surface, petioles, and stems. The top leaves were the most affected. Upper surfaces of the infected leaves were covered by white, dense mycelia. As the disease progressed, infected leaves turned purple on the lower surfaces and curly before becoming necrotic and abscising from the plant. Powdery mildew was more severe in shaded environments, especially during rainy or foggy weather in early spring. Two hundred conidiophores and conidia were observed microscopically. The conidiophores were straight or occasionally flexuous, 62.3 to 127.6 × 6.2 to 10.2 μm, consisting of two to three straight cells. Conidia were born in solitary on the top of conidiophores. Conidia were hyaline, ellipsoidal, 26.4 to 42.2 × 11.7 to 23.4 μm (average 32.5 × 16.5 μm), contained no distinct fibrosin bodies, and produced a subterminal germ tube. The wrinkling pattern of the outer walls of older conidia was angular or reticulated. Appressoria were single and multilobed. Cleistothecia were not observed. Based on morphological characteristics, the fungus was identified as Oidium neolycopersici (2), which was recently renamed Pseudoidium neolycopersici (L. Kiss) (3). The identity was confirmed by sequence analysis. Genomic DNA was extracted from the foliar powdery mildew colonies using Chelex-100 (Bio-Rad, Shanghai, China). The rDNA internal transcribed spacer (ITS) region was amplified with primers ITS1 and ITS4 (5). The ITS sequence of the representative isolates C01 (GenBank Accession No. KJ890378.1) and four other powdery mildew samples collected from crotons in Hainan University was 100% identical to that of P. neolycopersici isolates from tomato plants such as JQ972700 and AB163927. Inoculations were made by gently pressing diseased leaves onto leaves of five healthy plants of croton and tomato (‘Money maker’). Five non-inoculated croton and tomato plants served as controls. Inoculated and non-inoculated plants were maintained in an incubator at 25°C with a 12-h photoperiod. After eight days, typical powdery mildew symptoms developed on 93% of the inoculated plants, while no symptom developed on the non-inoculated plants. The pathogenicity tests were repeated three times. The same fungus was always re-isolated from the diseased tissue according to Koch's postulates. The pathogenicity tests further confirmed that the pathogen from crotons is P. neolycopersici (Basionym. Oidium neolycopersici (KJ890378.1)), which is commonly known as the tomato powdery mildew. P. neolycopersici is also a pathogen of Normania triphylla (1) and papaya (4). To our knowledge, this is the first report of P. neolycopersici infecting croton. The avenue of this pathogen entering gardens of Hainan University remains unknown. The gardens are located far away from tomato farms. Also no symptom of powdery mildew on croton was observed during surveys in other locations in Haikou. The origin of the pathogen warrants additional research. References: (1) D. Delmail et al. Mycotaxon 113:269, 2010. (2) L. Kiss et al. Mycol. Res. 105:684, 2001. (3) L. Kiss et al. Mycol. Res. 115:612, 2011. (4) J. G. Tsay et al. Plant Dis. 95:1188, 2011. (5) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


2005 ◽  
Vol 83 (8) ◽  
pp. 1087-1096 ◽  
Author(s):  
Jean-Pierre Tremblay ◽  
Isabel Thibault ◽  
Christian Dussault ◽  
Jean Huot ◽  
Steeve D Côté

Selective browsing by cervids has persistent impacts on forest ecosystems. On Anticosti Island, Quebec, Canada, introduced white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) have caused massive changes to the native boreal forest. Despite the apparent stability of the deer population over recent decades, we suspected that they were not at equilibrium with their browse supply and that further degradation of the habitat had occurred. A comparison of two browse surveys conducted 25 years apart showed a strong decline in browse availability. Although balsam fir (Abies balsamea (L.) P. Mill.) remained the most available browse species, it declined or disappeared from most stands (n = 13). Preferred deciduous species that were still available 25 years ago have almost disappeared. The continuous decline of the browse supply confirmed our hypothesis. This situation may be exacerbated by a subsidy from the winter litterfall, a significant and stable alternative food source. The abundance of litterfall from mature trees is independent of browsing over a long time period, which introduces a temporal uncoupling between the impact of deer browsing on balsam fir seedlings and the negative feedback from recruitment failure of mature balsam fir on the deer population. This means that the system is susceptible to being forced into an alternative regime.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 912-912 ◽  
Author(s):  
M. Stevanović ◽  
I. Stanković ◽  
A. Vučurović ◽  
N. Dolovac ◽  
E. Pfaf-Dolovac ◽  
...  

In September 2011, tomato (Solanum lycopersicum L. ‘Big Beef’) plants showing typical symptoms of powdery mildew were collected in a greenhouse in the vicinity of Padinska Skela (District of City of Belgrade) in Serbia. Numerous circular, white colonies of powdery mildew were observed predominantly on the adaxial surface of the leaves, the petioles, and the stems. The foliage of infected plants turned yellow and necrotic, which was followed by rapid defoliation. Disease incidence was estimated by counting plants with powdery mildew symptoms in a random batch of 100 plants in four replicates and estimated to be extremely high, approaching 90%. Tomato plants (‘Novosadski Jabučar’) were inoculated with conidia released from diseased tomato leaves positioned above the tomato leaves and maintained at 25°C with a 14-h photoperiod. Healthy tomato plants from the same lot, which were not exposed to the conidia shower, were used as negative control. The first white fungal colonies appeared on the leaves of the inoculated plants within 4 to 7 days after inoculation, while no fungal growth was observed in the control plants. To determine the morphological characteristics of the pathogen, surface mycelium was removed with small strips of clear adhesive tape and examined using light microscopy. Microscopic observation revealed mycelium with lobed appressoria and hyaline, ellipsoid-ovoid or doliform conidia (32.5 to 47.5 × 17.5 to 25 μm) with no distinct firosin bodies and which produced sub-terminal germ tubes. Conidia were produced on the unbranched, erect conidiophores (82.5 to 150 μm) consisting of a cylindrical foot-cell followed by one to three short cells. No chasmothecia were found. On the basis of morphological characteristics, the pathogen was identified as Oidium neolycopersici (4), which was confirmed by internal transcribed spacer (ITS) sequence analysis. Total DNA was extracted directly from the whitish spots of superficial mycelium on the leaves with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions. PCR amplification and sequencing were performed with primers ITS1F and ITS4 (1). The nucleotide sequence of the representative isolate 809-11 (Accession No. JQ619840) shared 100% identity with 16 O. neolycopersici isolates deposited in GenBank from different parts of the world. Tomato powdery mildew caused by O. neolycopersici is present in many European (4) and other countries around the world (3) and is becoming economically very important as majority of the tomato cultivars have shown to be susceptible (2). To our knowledge, this is the first report of O. neolycopersici in Serbia. Because tomato is a very popular and widely grown vegetable in Serbia, the presence of a new and potentially harmful disease could endanger greenhouse as well as open field tomato production. References: (1) J. H. Cunnington et al. Australas. Plant Pathol. 32:421, 2003. (2) T. Jankovics et al. Phytopathology 98:529, 2008. (3) H. Jones et al. Mol. Plant Pathol. 2:303, 2001. (4) L. Kiss et al. Mycol. Res. 105:684, 2001.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254032
Author(s):  
Lachlan Pettit ◽  
Mathew S. Crowther ◽  
Georgia Ward-Fear ◽  
Richard Shine

Biological invasions can massively disrupt ecosystems, but evolutionary and ecological adjustments may modify the magnitude of that impact through time. Such post-colonisation shifts can change priorities for management. We quantified the abundance of two species of giant monitor lizards, and of the availability of their mammalian prey, across 45 sites distributed across the entire invasion trajectory of the cane toad (Rhinella marina) in Australia. One varanid species (Varanus panoptes from tropical Australia) showed dramatic population collapse with toad invasion, with no sign of recovery at most (but not all) sites that toads had occupied for up to 80 years. In contrast, abundance of the other species (Varanus varius from eastern-coastal Australia) was largely unaffected by toad invasion. That difference might reflect availability of alternative food sources in eastern-coastal areas, perhaps exacerbated by the widespread prior collapse of populations of small mammals across tropical (but not eastern) Australia. According to this hypothesis, the impact of cane toads on apex predators has been exacerbated and prolonged by a scarcity of alternative prey. More generally, multiple anthropogenically-induced changes to natural ecosystems may have synergistic effects, intensifying the impacts beyond that expected from either threat in isolation.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 915-919 ◽  
Author(s):  
W. Oichi ◽  
Y. Matsuda ◽  
T. Nonomura ◽  
H. Toyoda ◽  
L. Xu ◽  
...  

The formation of conidial pseudochains by the tomato powdery mildew Oidium neolycopersici on tomato leaves was monitored using a high-fidelity digital microscope. Individual living conidiophores that formed mature conidial cells at their apex were selected for observation. The conidial cells were produced during repeated division and elongation by the generative cells of the conidiophores. Under weak wind conditions (0.1 m/s), these conidial cells did not separate from each other to produce a chain of conidial cells (pseudochain). The pseudochains dropped from the conidiophores once four conidial cells were connected. The conidiophores resumed conidium production, followed by another cycle of pseudochain formation. The formation of pseudochains by tomato powdery mildew was not influenced by the ambient relative humidity. On the other hand, the conidial cells produced were easily wind dispersed without forming pseudochains when conidiophores were exposed to stronger winds (1.0 m/s). The present study successfully demonstrated that the pathogen required wind to disperse progeny conidia from the conidiophores and produced conidial pseudochains when the wind was below a critical level, independent of high relative humidity as reported previously.


2014 ◽  
Vol 112 (8) ◽  
pp. 1373-1383 ◽  
Author(s):  
Susan I. Barr ◽  
Loretta DiFrancesco ◽  
Victor L. Fulgoni

Although breakfast is associated with more favourable nutrient intake profiles in children, limited data exist on the impact of breakfast on nutrient adequacy and the potential risk of excessive intakes. Accordingly, we assessed differences in nutrient intake and adequacy among breakfast non-consumers, consumers of breakfasts with ready-to-eat cereal (RTEC) and consumers of other types of breakfasts. We used cross-sectional data from 12 281 children and adolescents aged 4–18 years who took part in the nationally representative Canadian Community Health Survey, 2004. Mean nutrient intakes (obtained using a multiple-pass 24 h recall method) were compared among the breakfast groups using covariate-adjusted regression analysis. Usual nutrient intake distributions, generated using the National Cancer Institute method, were used to determine the prevalence of nutrient inadequacy or the potential risk of excessive intakes from food sources alone and from the combination of food plus supplements. Of these Canadian children, 10 % were breakfast non-consumers, 33 % were consumers of RTEC breakfasts and 57 % were consumers of other types of breakfasts. Non-consumption of breakfast increased with age (4–8 years: 2 %; 9–13 years: 9 %; 14–18 years: 18 %). Breakfast consumers had higher covariate-adjusted intakes of energy, many nutrients and fibre, and lower fat intakes. The prevalence of nutrient inadequacy for vitamin D, Ca, Fe and Mg (from food alone or from the combination of food plus supplements) was highest in breakfast non-consumers, intermediate in consumers of other types of breakfasts and lowest in consumers of RTEC breakfast. For vitamin A, P and Zn, breakfast non-consumers had a higher prevalence of nutrient inadequacy than both breakfast groups. The potential risk of excessive nutrient intakes was low in all groups. Efforts to encourage and maintain breakfast consumption in children and adolescents are warranted.


2020 ◽  
Author(s):  
Edounou Jacques Gnambani ◽  
Etienne Bilgo ◽  
Adama Sanou ◽  
Roch K. Dabire ◽  
Abdoulaye Diabate

Abstract Background This is now a concern that malaria eradication will not be achieved without the introduction of novel control tools. Microbiological control might be able to make a greater contribution to vector control in the future. The interactions between bacteria and mosquito make mosquito microbiota really promising from a disease control perspective. Here, we studied the impact of Chromobacterium violaceum infections isolated from both larvae and adult of wild caught Anopheles gambiae s.l. mosquitoes in Burkina Faso on mosquito survival, blood feeding and fecundity propensy. Methods To assess entomopathogenic effects of C. violaceum infection on mosquitoes, three different types of bioassays were performed in laboratory. These bioassays aimed to evaluate the impact of C.violaceum infection on mosquito survival, blood feeding and fecundity, respectively. During bioassays mosquitoes were infected through the well-established system of cotton ball soaked with 6% glucose containing C.violaceum . Results C. violaceum kills pyrethroid resistant mosquitoes An. coluzzii (LT80 of 8.78 days ± 0.18 at 10 8 bacteria cell/ml of sugar meal). Interestingly, this bacterium had other negative effects on mosquito lifespan by significantly reducing (~59%, P<0.001) the mosquito feeding willingness from day 4-post infection (~81% would seek a host to blood feed) to 9- day post infection (22 ± 4.62% would seek a host to blood feed). Moreover, C. violaceum considerably jeopardized the egg laying (~16 eggs laid /mosquitoes with C. violaceum infected mosquitoes vs ~129 eggs laid / mosquitoes with control mosquitoes) and hatching of mosquitoes (A reduction of ~22 % of hatching rate with C. violaceum infected mosquitoes). Compared to the bacterial uninfected mosquitoes, mosquitoes infected with C. violaceum showed indeed significantly higher retention rates of immature eggs and follicles. Conclusion These data showed important properties of Burkina Faso C. violaceum strains , which are highly virulent against insecticide resistant Anopheles coluzzii , and reduce both mosquito blood feeding and fecundity propensities. However, additional studies as the sequencing of C. violaceum genome and the potential toxins secreted will certainly provide useful information render it a potential candidate for the biological control strategies of malaria and other disease vectors.


Plant Disease ◽  
1997 ◽  
Vol 81 (2) ◽  
pp. 227-227 ◽  
Author(s):  
J. F. White ◽  
S. A. Johnston ◽  
C.-L. Wang ◽  
C.-K. Chin

Powdery mildew of tomatoes caused by an Erysiphe sp. has been reported to occur in greenhouses in New York (2). In March and April of 1996, outbreaks of this disease were found in greenhouse-grown tomato plants of cv. PSR55809 at the Cook College campus in New Brunswick, NJ, and in cv. Match in commercial greenhouses in Burlington County, NJ. Identification of an Erysiphe sp. was made by comparative morphology of the conidial state since the perfect stage was not observed. Symptoms included development of patches of white mycelium predominantly on upper surfaces of older leaves followed by chlorosis of tissues colonized by the fungus. Microscopic examination of mycelium revealed the presence of typical Oidium conidiogenous cells and conidia. Conidiogenous cells were short and cylindrical and produce conidia in chains apically. Conidia were hyaline, cylindrical to ellipsoidal, and measured 36 + 4.9 × 16.7 + 2.2 μm (n = 20). Both conidia and symptoms of this powdery mildew are comparable to those previously given for the Erysiphe sp. described in New York (2). Another powdery mildew of tomato, caused by Oidiopsis sicula Scalia, occurs in the western U.S., Mediterranean Basin, Africa, and Asia. However, the conidia of O. sicula are of two types, pyriform and cylindrical, and they are larger than those of an Erysiphe sp. (1). To verify pathogenicity of this Erysiphe sp. to tomatoes, conidia washed from leaves were misted onto uninfected leaves of young tomato plants. After 1 week in a growth chamber (25°C; 80% relative humidity; 12 h of light), typical powdery mildew symptoms were evident on inoculated plants, while unmisted plants remained free of symptoms. Microscopic examination of the fungus on surfaces of leaves confirmed it to be an Erysiphe sp. References: (1) R. N. Campbell and R. W. Scheuerman. Plant Dis. Rep. 63:1087, 1979. (2) D. M. Karasevicz and T. A. Zitter. Plant Dis. 80:709, 1996.


Sign in / Sign up

Export Citation Format

Share Document