scholarly journals Detection of Yeast-like Symbionts in Brown Planthopper Reared on Different Resistant Rice Varieties Combining DGGE and Absolute Quantitative Real-Time PCR

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Chengling Lai ◽  
Yun Hou ◽  
Peiying Hao ◽  
Kun Pang ◽  
Xiaoping Yu

The brown planthopper (BPH), Nilaparvata lugens, is a serious pest of rice throughout Asia. Yeast-like symbionts (YLS) are endosymbionts closely linked with the development of BPH and the adapted mechanism of BPH virulence to resistant plants. In this study, we used semi-quantitative DGGE and absolute quantitative real-time PCR (qPCR) to quantify the number of the three YLS strains (Ascomycetes symbionts, Pichia-like symbionts, and Candida-like symbionts) that typically infect BPH in the nymphal stages and in newly emerged female adults. The quantities of each of the three YLS assessed increased in tandem with the developing nymphal instar stages, peaking at the fourth instar stage, and then declined significantly at the fifth instar stage. However, the amount of YLS present recovered sharply within the emerging adult females. Additionally, we estimated the quantities of YLS for up to eight generations after their inoculation onto resistant cultivars (Mudgo, ASD7, and RH) to reassociate the dynamics of YLS with the fitness of BPH. The minimum number of each YLS was detected in the second generation and gradually increased from the third generation with regard to resistant rice varieties. In addition, the Ascomycetes symbionts of YLS were found to be the most abundant of the three YLS strains tested for all of the development stages of BPH.

2020 ◽  
Author(s):  
Wallop Jakkul ◽  
Kittipong Chaisiri ◽  
Naowarat Saralamba ◽  
Yanin Limpanont ◽  
Sirilak Dusitsittipon ◽  
...  

Abstract Background: Angiostrongylus cantonensis is a well-known pathogen causing human angiostrongyliasis eosinophilic meningitis. Humans, as accidental hosts, are infected by eating undercooked snails containing third-stage larvae. A. malaysiensis is closely related to A. cantonensis and has been described as a potential human pathogen. Recently, the two species have been reported to have overlapping distributions in the same endemic area, particularly in the Indochina region. Because of their similar morphological characteristics, misidentification often occurs, particularly of the third-stage larva in the snail intermediate host. Methods: We designed species-specific primers to mitochondrial cytochrome b, which was used as a genetic marker. SYBR-green quantitative real-time PCR (qPCR) was employed to quantitatively detect and identify the third-stage larvae and tissue debris in the cerebrospinal fluid (CSF) of a patient, and to quantify third-stage larvae in the snail Achatina fulica collected from the field.Results: The newly designed primers were highly specific and sensitive, even when using conventional PCR. SYBR green qPCR quantitatively detected around 10−4 ng of genomic DNA from one larva and facilitated the specific detection and identification of parasitic genetic material from the CSF of a patient with angiostrongyliasis. The method also estimated the number of larvae in A. fulica and revealed that the primary source of Angiostrongylus infection in the King Rama IX public park study area was A. malaysiensis; although, the two Angiostrongylus species each infected 10% of the snails. Conclusions: Our SYBR green qPCR method is a useful and inexpensive technique for parasite identification and has sufficient sensitivity and specificity to detect a single larva and simultaneously discriminate between A. cantonensis and A. malaysiensis. The number of larvae infecting or co-infecting the snail intermediate host can also be estimated. In future research, this qPCR method could be employed in a molecular survey of A. cantonensis and A. malaysiensis occurrence within intermediate and definitive hosts. The technique should also be applied in a study analyzing CSF specimens from patients with eosinophilic meningitis to assess the usefulness of the method for clinical diagnosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Hongjuan Liao ◽  
Yueheng Wang ◽  
Jinlin Zhou ◽  
Feng Wang ◽  
...  

Abstract Background Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. Methods Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. Results The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. Conclusions Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


2008 ◽  
Vol 375 (1) ◽  
pp. 150-152 ◽  
Author(s):  
Cheng Xin Yi ◽  
Jun Zhang ◽  
Ka Man Chan ◽  
Xiao Kun Liu ◽  
Yan Hong

2011 ◽  
Vol 50 (3) ◽  
pp. 948-952 ◽  
Author(s):  
J.-F. Jazeron ◽  
C. Barbe ◽  
E. Frobert ◽  
F. Renois ◽  
D. Talmud ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sanaz Dehbashi ◽  
Hamed Tahmasebi ◽  
Behrouz Zeyni ◽  
Mohammad Reza Arabestani

Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA)-bloodstream infections (BSI) are predominantly seen in the hospital or healthcare-associated host. Nevertheless, the interactions of virulence factor (VFs) regulators and β-lactam resistance in MRSA-BSI are unclear. This study aims to characterize the molecular relationship of two-component systems of VFs and the expression of the β-lactamase gene in MRSA-BSI isolates. In this study, 639 samples were collected from BSI and identified by phenotypic methods. We performed extensive molecular characterization, including SCCmec type, agr type, VFs gene profiles determinations, and MLST on isolates. Also, a quantitative real-time PCR (q-RT PCR) assay was developed for identifying the gene expressions. Results Ninety-one (91) S. aureus and 61 MRSA (67.0%) strains were detected in BSI samples. The presence of VFs and SCCmec genes in MRSA isolates were as follows: tst (31.4%), etA (18.0%), etB (8.19%), lukS-PVL (31.4%), lukF-PV (18.0%), lukE-lukD (16.3%), edin (3.2%), hla (16.3%), hlb (18.0%), hld (14.7%), hlg (22.9%), SCCmecI (16.3%), SCCmecII (22.9%), SCCmecIII (36.0%), SCCmecIV (21.3%), and SCCmecV (16.3%). Quantitative real-time PCR showed overexpression of mecRI and mecI in the toxigenic isolates. Moreover, RNAIII and sarA genes were the highest expressions of MRSA strains. The multi-locus sequence typing data confirmed a high prevalence of CC5, CC8, and CC30. However, ST30, ST22, and ST5 were the most prevalent in the resistant and toxigenic strains. Conclusion We demonstrated that although regulation of β-lactamase gene expressions is a significant contributor to resistance development, two-component systems also influence antibiotic resistance development in MRSA-BSI isolates. This indicates that resistant strains might have pathogenic potential. We also confirmed that some MLST types are more successful colonizers with a potential for MRSA-BSI.


Sign in / Sign up

Export Citation Format

Share Document