scholarly journals Chemically-Boosted Corneal Cross-Linking for the Treatment of Keratoconus through a Riboflavin 0.25% Optimized Solution with High Superoxide Anion Release

2021 ◽  
Vol 10 (6) ◽  
pp. 1324
Author(s):  
Cosimo Mazzotta ◽  
Marco Ferrise ◽  
Guido Gabriele ◽  
Paolo Gennaro ◽  
Alessandro Meduri

The purpose of this study was to evaluate the effectiveness and safety of a novel buffered riboflavin solution approved for corneal cross-linking (CXL) in progressive keratoconus and secondary corneal ectasia. Following the in vivo preclinical study performed on New Zealand rabbits comparing the novel 0.25% riboflavin solution (Safecross®) containing 1% hydroxypropyl methylcellulose (HPMC) with a 0.25% riboflavin solution containing 0.10% EDTA, accelerated epithelium-off CXL was performed on 10 patients (10 eyes treated, with the contralateral eye used as control) through UV-A at a power setting of 9 mW/cm2 with a total dose of 5.4 J/cm2. Re-epithelialization was evaluated in the postoperative 7 days by fluorescein dye test at biomicroscopy; endothelial cell count and morphology (ECD) were analyzed by specular microscopy at the 1st and 6th month of follow-up and demarcation line depth (DLD) measured by anterior segment optical coherence tomography (AS-OCT) one month after the treatment. We observed complete re-epithelization in all eyes between 72 and 96 h after surgery (88 h on average). ECD and morphology remained unchanged in all eyes. DLD was detected at a mean depth of 362 ± 50 µm, 20% over solutions with equivalent dosage. SafeCross® riboflavin solution chemically-boosted corneal cross-linking seems to optimize CXL oxidative reaction by higher superoxide anion release, improving DLD by a factor of 20%, without adverse events for corneal endothelium.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Cosimo Mazzotta ◽  
Antonio Moramarco ◽  
Claudio Traversi ◽  
Stefano Baiocchi ◽  
Alfonso Iovieno ◽  
...  

Purpose. To assess the clinical and morphological outcomes of topography-guided accelerated corneal cross-linking. Design. Retrospective case series. Methods. 21 eyes of 20 patients with progressive keratoconus were enrolled. All patients underwent accelerated cross-linking using an ultraviolet-A (UVA) exposure with an energy release varying from 7.2 J/cm2 up to 15 J/cm2, according to the topographic corneal curvature. Uncorrected (UDVA) and corrected (CDVA) distance visual acuity, topography, in vivo confocal microscopy (IVCM), and anterior segment optic coherence tomography (AS-OCT) were evaluated preoperatively and at the 1, 3, 6, and 12 months postoperatively. Results. 12 months after surgery UDVA and CDVA did not significantly vary from preoperative values. The average topographic astigmatism decreased from -4.61±0.74 diopters (D) to -3.20±0.81 D and coma aberration improved from 0.95 ± 0.03 μm to 0.88 ± 0.04 μm after surgery. AS-OCT and IVCM documented differential effects on the treated areas using different energies doses. The depths of demarcation line and keratocyte apoptosis were assessed. Conclusions. Preliminary results show correspondence between the energy dose applied and the microstructural stromal changes induced by the cross-linking at various depths in different areas of treated cornea. One year after surgery a significant reduction in the topographic astigmatism and comatic aberration was detected. None of the patients developed significant complications.


2019 ◽  
Vol 2019 ◽  
pp. 1-4 ◽  
Author(s):  
Yehia Salah ◽  
Kholoud Omar ◽  
Ahmed Sherif ◽  
Sarah Azzam

Aim. This is a prospective interventional clinical trial to assess the depth of the demarcation line in transepithelial versus epithelium-off accelerated corneal cross-linking (AXL) in keratoconus patients. Methods. This prospective clinical trial was conducted on 40 eyes of 20 patients. Each patient had transepithelial AXL in one eye and epithelium-off AXL in the contralateral eye applying UVA light with an irradiance of 45 mW/cm2 for 2.4 minutes and 30 mW/cm2 for 4 minutes. The depth of the demarcation line was measured using anterior segment OCT (Topcon 3D OCT-2000) one month postoperative for both eyes. Results. The demarcation line was patchy in 50% of the transepithelial AXL eyes, the other half showing a demarcation line at a mean depth of 183 ± 41.6 μm. In the epithelium-off AXL technique, the demarcation line was well defined in all cases with a mean depth of 219 ± 27.3 μm. There was a statistically significant difference in corneal demarcation line depth between transepithelial and epithelium-off techniques (P = 0.008 and P < 0.05). The shallower demarcation line in the transepithelial group suggests that it is less effective. Conclusion. Based on the depth of the demarcation line, the cross-linking effect of epi-off AXL seems more efficacious than after transepithelial AXL. The future will show if the biomechanical effect will be sufficient to stop progression of keratoconus similarly after standard CXL. This trial is registered with NCT04045626.


1995 ◽  
Vol 74 (06) ◽  
pp. 1501-1510 ◽  
Author(s):  
J Kuiper ◽  
H van de Bilt ◽  
U Martin ◽  
Th J C van Berkel

SummaryThe catabolism of the novel plasminogen activator reteplase (BM 06.022) was described. For this purpose BM 06.022 was radiolabelled with l25I or with the accumulating label l25I-tyramine cellobiose (l25I-TC).BM 06.022 was injected at a pharmacological dose of 380 μg/kg b.w. and it was cleared from the plasma in a biphasic manner with a half-life of about 1 min in the α-phase and t1/2of 20-28 min in the β-phase. 28% and 72% of the injected dose was cleared in the α-phase and β-phase, respectively. Initially liver, kidneys, skin, bones, lungs, spleen, and muscles contributed mainly to the plasma clearance. Only liver and the kidneys, however, were responsible for the uptake and subsequent degradation of BM 06.022 and contributed for 75% to the catabolism of BM 06.022. BM 06.022 was degraded in the lysosomal compartment of both organs. Parenchymal liver cells were responsible for 70% of the liver uptake of BM 06.022. BM 06.022 associated rapidly to isolated rat parenchymal liver cells and was subsequently degraded in the lysosomal compartment of these cells. BM 06.022 bound with low-affinity to the parenchymal liver cells (550 nM) and the binding of BM 06.022 could be displaced by t-PA (IC50 5.6 nM), indicating that the low-density lipoprotein receptor-related protein (LRP) could be involved in the binding of BM 06.022. GST-RAP, which is an inhibitor of LRP, could in vivo significantly inhibit the uptake of BM 06.022 in the liver.It is concluded that BM 06.022 is metabolized primarily in the liver and the kidneys. These organs take up and degrade BM 06.022 in the lysosomes. The uptake mechanism of BM 06.022 in the kidneys is unknown, while LRP is responsible for a low-affinity binding and uptake of BM 06.022 in parenchymal liver cells.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


2019 ◽  
Vol 19 (1) ◽  
pp. 31-45
Author(s):  
Meena K. Yadav ◽  
Laxmi Tripathi

Background: N-{[3-(4-chlorophenyl)-4-oxo-3, 4-dihydroquinazolin-2-yl] methyl}, 2-[(2- isopropyl-5-methyl) 1-cyclohexylidene] hydrazinecarboxamide QS11 was designed by computational study. It possessed essential pharmacophoric features for anticonvulsant activity and showed good docking with iGluRs (Kainate) glutamate receptor. Methods: QSAR and ADMET screening results suggested that QS11 would possess good potency for anticonvulsant activity. QS11 was synthesised and evaluated for its anticonvulsant activity and neurotoxicity. QS11 showed protection in strychnine, thiosemicarbazide, 4-aminopyridine and scPTZ induced seizure models and MES seizure model. QS11 showed higher ED50, TD50 and PI values as compared to the standard drugs in both MES and scPTZ screen. A high safety profile (HD50/ED50 values) was noted and hypnosis, analgesia, and anaesthesia were only observed at higher doses. No considerable increase or decrease in the concentration of liver enzymes was observed. Optimized QS11 was subjected to preclinical (in-vivo) studies and the pharmacokinetic performance of the sample was investigated. The result revealed that the pharmacokinetic performance of QS11 achieved maximum plasma concentrations (Cmax) of 0.315 ± 0.011 µg/mL at Tmax of 2.0 ± 0.13 h, area under the curve (AUC0-∞) value 4.591 ± 0.163 µg/ml x h, elimination half-life (T1/2) 6.28 ± 0.71 h and elimination rate constant was found 0.110 ± 0.013 h-1. Results and Conclusion: Above evidences indicate that QS11 could serve as a lead for development of new antiepileptic drugs.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 574
Author(s):  
Nikhat Perween ◽  
Sultan Alshehri ◽  
T. S. Easwari ◽  
Vivek Verma ◽  
Md. Faiyazuddin ◽  
...  

Molecules with poor aqueous solubility are difficult to formulate using conventional approaches and are associated with many formulation delivery issues. To overcome these obstacles, nanosuspension technology can be one of the promising approaches. Hence, in this study, the feasibility of mefenamic acid (MA) oral nanosuspension was investigated for pediatric delivery by studying the role of excipients and optimizing the techniques. Nanosuspensions of MA were prepared by adopting an antisolvent precipitation method, followed by ultrasonication with varying concentrations of polymers, surfactants, and microfluidics. The prepared nanosuspensions were evaluated for particle size, morphology, and rheological measures. Hydroxypropyl methylcellulose (HPMC) with varying concentrations and different stabilizers including Tween® 80 and sodium dodecyl sulfate (SLS) were used to restrain the particle size growth of the developed nanosuspension. The optimized nanosuspension formula was stable for more than 3 weeks and showed a reduced particle size of 510 nm with a polydispersity index of 0.329. It was observed that the type and ratio of polymer stabilizers were responsive on the particle contour and dimension and stability. We have developed a biologically compatible oral nanoformulation for a first-in-class drug beautifully designed for pediatric delivery that will be progressed toward further in vivo enabling studies. Finally, the nanosuspension could be considered a promising carrier for pediatric delivery of MA through the oral route with enhanced biological impact.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


Sign in / Sign up

Export Citation Format

Share Document