scholarly journals Infection of Human Cells by SARS-CoV-2 and Molecular Overview of Gastrointestinal, Neurological, and Hepatic Problems in COVID-19 Patients

2021 ◽  
Vol 10 (21) ◽  
pp. 4802
Author(s):  
Mahdie Rahban ◽  
Agata Stanek ◽  
Amirreza Hooshmand ◽  
Yasaman Khamineh ◽  
Salma Ahi ◽  
...  

The gastrointestinal tract is the body’s largest interface between the host and the external environment. People infected with SARS-CoV-2 are at higher risk of microbiome alterations and severe diseases. Recent evidence has suggested that the pathophysiological and molecular mechanisms associated with gastrointestinal complicity in SARS-CoV-2 infection could be explained by the role of angiotensin-converting enzyme-2 (ACE2) cell receptors. These receptors are overexpressed in the gut lining, leading to a high intestinal permeability to foreign pathogens. It is believed that SARS-CoV-2 has a lesser likelihood of causing liver infection because of the diminished expression of ACE2 in liver cells. Interestingly, an interconnection between the lungs, brain, and gastrointestinal tract during severe COVID-19 has been mentioned. We hope that this review on the molecular mechanisms related to the gastrointestinal disorders as well as neurological and hepatic manifestations experienced by COVID-19 patients will help scientists to find a convenient solution for this and other pandemic events.

2020 ◽  
Author(s):  
Cristina Garcia-Iriepa ◽  
Cecilia Hognon ◽  
Antonio Francés-Monerris ◽  
Isabel Iriepa ◽  
Tom Miclot ◽  
...  

<div><p>Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 180,000 deaths all over the world, still lacking a medical treatment despite the concerns of the whole scientific community. Human Angiotensin-Converting Enzyme 2 (ACE2) was recently recognized as the transmembrane protein serving as SARS-CoV-2 entry point into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the complex and of the effects of possible ligands. Moreover, binding free energy between ACE2 and the active Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein is evaluated quantitatively, assessing the molecular mechanisms at the basis of the recognition and the ligand-induced decreased affinity. These results boost the knowledge on the molecular grounds of the SARS-CoV-2 infection and allow to suggest rationales useful for the subsequent rational molecular design to treat severe COVID-19 cases.</p></div>


2020 ◽  
Vol 134 (7) ◽  
pp. 747-750 ◽  
Author(s):  
Rhian M. Touyz ◽  
Hongliang Li ◽  
Christian Delles

Abstract Angiotensin converting enzyme 2 (ACE2) is the major enzyme responsible for conversion of Ang II into Ang-(1-7). It also acts as the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2, which causes Coronavirus Disease (COVID)-19. In recognition of the importance of ACE2 and to celebrate 20 years since its discovery, the journal will publish a focused issue on the basic science and (patho)physiological role of this multifunctional protein.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 742
Author(s):  
Bogusz Trojanowicz ◽  
Christof Ulrich ◽  
Matthias Girndt

Apelin peptides (APLN) serve as second substrates for angiotensin-converting enzyme 2 (ACE2) and, in contrast to angiotensin II (AngII), exert blood-pressure lowering and vasodilatation effects through binding to G-coupled APLN receptor (APLNR). ACE2-mediated cleavage of the APLN may reduce its vasodilatory effects, but decreased ACE2 may potentiate the hypotensive properties of APLN. The role of APLN in uremia is unclear. We investigated the correlations between serum-APLN, leucocytic APLNR, and ACE2 in 32 healthy controls (NP), 66 HD, and 24 CKD3–5 patients, and the impact of APLN peptides on monocytic behavior and ACE2 expression under uremic conditions in vitro. We observed that serum APLN and leucocytic APLNR or SLCO2B1 were significantly elevated in uremic patients and correlated with decreased ACE2 on uremic leucocytes. APLN-treated THP-1 monocytes revealed significantly increased APLNR and ACE2, and reduced TNFa, IL-6, and MCSF. Uremic toxins induced a dramatic increase of miR-421 followed by significant reduction of ACE2 transcripts, partially counteracted with APLN-13 and -36. APLN-36 triggered the most potent transmigration and reduction of endothelial adhesion. These results suggest that although APLN peptides may partly protect against the decay of monocytic ACE2 transcripts, uremic milieu is the most dominant modulator of local ACE2, and likely to contribute to the progression of atherosclerosis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Nisha Sharma ◽  
Anil Bhanudas Gaikwad

Abstract Background and Aims In clinical settings, diabetics remain on higher risk of ischemic renal injury (IRI) than nondiabetic patients. In addition, IRI predisposes distant organs to dysfunction such as neurological impairments via activation of the pressor arm of renin-angiotensin system (RAS). In contrast, the role of depressor arm of RAS on IRI-associated neurological sequalae remains elusive. Hence, this study explored the role of angiotensin II type 2 receptor (AT2R) and angiotensin-converting enzyme 2 (ACE2) in IRI-associated neurological dysfunctions under nondiabetic (ND) and diabetes mellitus (DM) condition. Method Type 1 diabetes was induced by injecting streptozotocin (55 mg/kg i.p.). ND and DM rats with bilateral IRI were treated with AT2R agonist-Compound 21 (C21) (0.3 mg/kg/day, i.p.) or ACE2 activator-Diminazene Aceturate (Dize), (5 mg/kg/day, p.o.) per se or in combination therapy. Behavioural, biochemical, and histopathological analysis were done to assess IRI-induced neurological impairment. Moreover, immunohistochemistry, ELISA and qRT-PCR experiments were conducted for molecular mechanism analysis. Result In ND and DM rats, IRI caused hippocampal complications as evidenced by increased MDA and nitrite levels, augmented inflammatory cytokines (granulocyte colony stimulating factor, glial fibrillary acidic protein), altered protein and mRNA expressions of Ang II, Ang-(1-7), AT1R, AT2R and MasR. In contrast, concomitant therapy of C21 and Dize effectively normalised aforementioned hippocampal alterations. The protective effect of combination therapy was exerted due to augmented protein and mRNA levels of depressor arm components. Conclusion The current study demonstrated the protective role of AT2R agonist and ACE2 activator in IRI-associated neurological dysfunction through preventing oxidative stress, inflammation and upregulating brain depressor arm of RAS under ND and DM conditions.


2020 ◽  
Vol 10 (18) ◽  
pp. 6224 ◽  
Author(s):  
Leonardo Mancini ◽  
Vincenzo Quinzi ◽  
Stefano Mummolo ◽  
Giuseppe Marzo ◽  
Enrico Marchetti

SARS-CoV-2 propagation in the world has led to rapid growth and an acceleration in the discoveries and publications of various interests. The main focus of a consistent number of studies has been the role of angiotensin-converting enzyme 2 (ACE2) in binding the virus and its role in expression of the inflammatory response after transmission. ACE2 is an enzyme involved in the renin–angiotensin system (RAS), whose key role is to regulate and counter angiotensin-converting enzyme (ACE), reducing the amount of angiotensin II and increasing angiotensin 1–7 (Ang1–7), making it a promising drug target for treating cardiovascular diseases. The classical RAS axis, formed by ACE, angiotensin II (Ang II), and angiotensin receptor type 1 (AT1), activates several cell functions and molecular signalling pathways related to tissue injury and inflammation. In contrast, the RAS axis composed of ACE2, Ang1–7, and Mas receptor (MasR) exerts the opposite effect concerning the inflammatory response and tissue fibrosis. Recent studies have shown the presence of the RAS system in periodontal sites where osteoblasts, fibroblasts, and osteoclasts are involved in bone remodelling, suggesting that the role of ACE2 might have a fundamental function in the under- or overexpression of cytokines such as interleukin-6 (IL-6), interleukin-7 (IL-7), tumour necrosis factor alpha (TNF-α), interleukin-2 (IL-2), interleukin-1 beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta (TGF-β), associated with a periodontal disorder, mainly during coinfection with SARS-CoV-2, where ACE2 is underexpressed and cannot form the ACE2–Ang1–7–MasR axis. This renders the patient unresponsive to an inflammatory process, facilitating periodontal loss.


Sign in / Sign up

Export Citation Format

Share Document