scholarly journals Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine

2021 ◽  
Vol 10 (21) ◽  
pp. 4966
Author(s):  
Gia Saini ◽  
Nicole Segaran ◽  
Joseph L. Mayer ◽  
Aman Saini ◽  
Hassan Albadawi ◽  
...  

Regenerative medicine is an emerging field that centers on the restoration and regeneration of functional components of damaged tissue. Tissue engineering is an application of regenerative medicine and seeks to create functional tissue components and whole organs. Using 3D printing technologies, native tissue mimics can be created utilizing biomaterials and living cells. Recently, regenerative medicine has begun to employ 3D bioprinting methods to create highly specialized tissue models to improve upon conventional tissue engineering methods. Here, we review the use of 3D bioprinting in the advancement of tissue engineering by describing the process of 3D bioprinting and its advantages over other tissue engineering methods. Materials and techniques in bioprinting are also reviewed, in addition to future clinical applications, challenges, and future directions of the field.

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 366 ◽  
Author(s):  
Vahid Serpooshan ◽  
Murat Guvendiren

Three-dimensional (3D) bioprinting uses additive manufacturing techniques to fabricate 3D structures consisting of heterogenous selections of living cells, biomaterials, and active biomolecules [...]


2019 ◽  
Vol 20 (18) ◽  
pp. 4628 ◽  
Author(s):  
Kevin Dzobo ◽  
Keolebogile Shirley Caroline M. Motaung ◽  
Adetola Adesida

The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


2021 ◽  
Vol 2 ◽  
Author(s):  
Qasem Ramadan ◽  
Mohammed Zourob

3D printing technology has emerged as a key driver behind an ongoing paradigm shift in the production process of various industrial domains. The integration of 3D printing into tissue engineering, by utilizing life cells which are encapsulated in specific natural or synthetic biomaterials (e.g., hydrogels) as bioinks, is paving the way toward devising many innovating solutions for key biomedical and healthcare challenges and heralds' new frontiers in medicine, pharmaceutical, and food industries. Here, we present a synthesis of the available 3D bioprinting technology from what is found and what has been achieved in various applications and discussed the capabilities and limitations encountered in this technology.


Author(s):  
Kevin Dzobo ◽  
Shirley Motaung ◽  
Adetola Adesida

Abstract: The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, all damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix, cells and inductive biomolecules. Currently, regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. Tissues and organs have a specific ECM, with specific proteins and factors released by cells residing within the local microenvironment. The coupling of regenerative medicine and tissue engineering field with 3D printing is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


Author(s):  
Dhakshinamoorthy Sundaramurthi ◽  
Sakandar Rauf ◽  
Charlotte Hauser

Alternative strategies that overcome existing organ transplantation methods are of increasing importance be-cause of ongoing demands and lack of adequate organ donors. Recent improvements in tissue engineering techniques offer improved solutions to this problem and will influence engineering and medicinal applications. Tissue engineering employs the synergy of cells, growth factors and scaffolds besides others with the aim to mimic the native extracellular matrix for tissue regeneration. Three-dimensional (3D) bioprinting has been explored to create organs for transplanta-tion, medical implants, prosthetics, in vitro models and 3D tissue models for drug testing. In addition, it is emerging as a powerful technology to provide patients with severe disease conditions with personalized treatments. Challenges in tis-sue engineering include the development of 3D scaffolds that closely resemble native tissues. In this review, existing printing methods such as extrusion-based, robotic dispensing, cellular inkjet, laser-assisted printing and integrated tissue organ printing (ITOP) are examined. Also, natural and synthetic polymers and their blends as well as peptides that are exploited as bioinks are discussed with emphasis on regenerative medicine applications. Furthermore, applications of 3D bioprinting in regenerative medicine, evolving strategies and future perspectives are summarized.


Bioprinting ◽  
2021 ◽  
Vol 21 ◽  
pp. e00124
Author(s):  
Seyed Hossein Mahfouzi ◽  
Seyed Hamid Safiabadi Tali ◽  
Ghassem Amoabediny

Author(s):  
Andreas Alvin Purnomo Soetedjo ◽  
Jia Min Lee ◽  
Hwee Hui Lau ◽  
Guo Liang Goh ◽  
Jia An ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


Author(s):  
Xavier Barceló ◽  
Stefan Scheurer ◽  
Rajesh Lakshmanan ◽  
Cathal J Moran ◽  
Fiona Freeman ◽  
...  

3D bioprinting has the potential to transform the field of regenerative medicine as it enables the precise spatial patterning of biomaterials, cells and biomolecules to produce engineered tissues. Although numerous tissue engineering strategies have been developed for meniscal repair, the field has yet to realize an implant capable of completely regenerating the tissue. This paper first summarized existing meniscal repair strategies, highlighting the importance of engineering biomimetic implants for successful meniscal regeneration. Next, we reviewed how developments in 3D (bio)printing are accelerating the engineering of functional meniscal tissues and the development of implants targeting damaged or diseased menisci. Some of the opportunities and challenges associated with use of 3D bioprinting for meniscal tissue engineering are identified. Finally, we discussed key emerging research areas with the capacity to enhance the bioprinting of meniscal grafts.


Sign in / Sign up

Export Citation Format

Share Document