scholarly journals Extramedullary Hematopoiesis of the Liver and Spleen

2021 ◽  
Vol 10 (24) ◽  
pp. 5831
Author(s):  
Diana Cenariu ◽  
Sabina Iluta ◽  
Alina-Andreea Zimta ◽  
Bobe Petrushev ◽  
Liren Qian ◽  
...  

Hematopoiesis is the formation of blood cellular components and, consequently, immune cells. In a more complete definition, this process refers to the formation, growth, maturation, and specialization of blood cells, from the hematopoietic stem cell, through the hematopoietic progenitor cells, to the s pecialized blood cells. This process is tightly regulated by several elements of the bone marrow microenvironment, such as growth factors, transcription factors, and cytokines. During embryonic and fetal development, hematopoiesis takes place in different organs: the yolk sac, the aorta–gonad mesonephros region, the lymph nodes, and not lastly, the fetal liver and the spleen. In the current review, we describe extramedullary hematopoiesis of the spleen and liver, with an emphasis on myeloproliferative conditions.

2019 ◽  
Vol 42 (7) ◽  
pp. 374-379 ◽  
Author(s):  
Hirotoshi Miyoshi ◽  
Chiaki Sato ◽  
Yuichiro Shimizu ◽  
Misa Morita

With the aim of establishing an effective method to expand hematopoietic stem/progenitor cells for application in hematopoietic stem cell transplantation, we performed ex vivo expansion of hematopoietic stem/progenitor cells derived from mouse fetal liver cells in three-dimensional cocultures with stromal cells. In these cocultures, stromal cells were first cultured within three-dimensional scaffolds to form stromal layers and then fetal liver cells containing hematopoietic cells were seeded on these scaffolds to expand the hematopoietic cells over the 2 weeks of coculture in a serum-containing medium without the addition of cytokines. Prior to coculture, stromal cell growth was suppressed by treatment with the DNA synthesis inhibitor mitomycin C, and its effect on hematopoietic stem/progenitor cell expansion was compared with that in control cocultures in which fetal liver cells were cocultured with three-dimensional freeze-thawed stromal cells. After coculture with mitomycin C-treated stromal cells, we achieved a several-fold expansion of the primitive hematopoietic cells (c-kit+hematopoietic progenitor cells >7.8-fold, and CD34+hematopoietic stem/progenitor cells >3.5-fold). Compared with control cocultures, expansion of hematopoietic stem/progenitor cells tended to be lower, although that of hematopoietic progenitor cells was comparable. Thus, our results suggest that three-dimensional freeze-thawed stromal cells have higher potential to expand hematopoietic stem/progenitor cells compared with mitomycin C-treated stromal cells.


2003 ◽  
Vol 284 (4) ◽  
pp. R1126-R1137 ◽  
Author(s):  
Maria Luisa S. Sequeira Lopez ◽  
Daniel R. Cherñavvsky ◽  
Takayo Nomasa ◽  
Lee Wall ◽  
Masashi Yanagisawa ◽  
...  

During embryonic life, hematopoiesis occurs first in the yolk sac, followed by the aorto-gonado-mesonephric region, the fetal liver, and the bone marrow. The possibility of hematopoiesis in other embryonic sites has been suspected for a long time. With the use of different methodologies (transgenic mice, electron microscopy, laser capture microdissection, organ culture, and cross-transplant experiments), we show that multiple regions within the embryo are capable of forming blood before and during organogenesis. This widespread phenomenon occurs by hemo-vasculogenesis, the formation of blood vessels accompanied by the simultaneous generation of red blood cells. Erythroblasts develop within aggregates of endothelial cell precursors. When the lumen forms, the erythroblasts “bud” from endothelial cells into the forming vessel. The extensive hematopoietic capacity found in the embryo helps explain why, under pathological circumstances such as severe anemia, extramedullary hematopoiesis can occur in any adult tissue. Understanding the intrinsic ability of tissues to manufacture their own blood cells and vessels has the potential to advance the fields of organogenesis, regeneration, and tissue engineering.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4055-4063 ◽  
Author(s):  
Vanta J. Jokubaitis ◽  
Lidia Sinka ◽  
Rebecca Driessen ◽  
Genevieve Whitty ◽  
David N. Haylock ◽  
...  

Abstract Previous studies revealed that mAb BB9 reacts with a subset of CD34+ human BM cells with hematopoietic stem cell (HSC) characteristics. Here we map BB9 expression throughout hematopoietic development and show that the earliest definitive HSCs that arise at the ventral wall of the aorta and surrounding endothelial cells are BB9+. Thereafter, BB9 is expressed by primitive hematopoietic cells in fetal liver and in umbilical cord blood (UCB). BB9+CD34+ UCB cells transplanted into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice contribute 10-fold higher numbers of multilineage blood cells than their CD34+BB9− counterparts and contain a significantly higher incidence of SCID-repopulating cells than the unfractionated CD34+ population. Protein microsequencing of the 160-kDa band corresponding to the BB9 protein established its identity as that of somatic angiotensin-converting enzyme (ACE). Although the role of ACE on human HSCs remains to be determined, these studies designate ACE as a hitherto unrecognized marker of human HSCs throughout hematopoietic ontogeny and adulthood.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jiafei Xi ◽  
Yanhua Li ◽  
Ruoyong Wang ◽  
Yunfang Wang ◽  
Xue Nan ◽  
...  

In vitromodels of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs). HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitiveβ-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs) are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.


2019 ◽  
Vol 8 (5) ◽  
pp. 579 ◽  
Author(s):  
Heleen H. Van Acker ◽  
Maarten Versteven ◽  
Felix S. Lichtenegger ◽  
Gils Roex ◽  
Diana Campillo-Davo ◽  
...  

Acute myeloid leukemia (AML) is a type of blood cancer characterized by the uncontrolled clonal proliferation of myeloid hematopoietic progenitor cells in the bone marrow. The outcome of AML is poor, with five-year overall survival rates of less than 10% for the predominant group of patients older than 65 years. One of the main reasons for this poor outcome is that the majority of AML patients will relapse, even after they have attained complete remission by chemotherapy. Chemotherapy, supplemented with allogeneic hematopoietic stem cell transplantation in patients at high risk of relapse, is still the cornerstone of current AML treatment. Both therapies are, however, associated with significant morbidity and mortality. These observations illustrate the need for more effective and less toxic treatment options, especially in elderly AML and have fostered the development of novel immune-based strategies to treat AML. One of these strategies involves the use of a special type of immune cells, the dendritic cells (DCs). As central orchestrators of the immune system, DCs are key to the induction of anti-leukemia immunity. In this review, we provide an update of the clinical experience that has been obtained so far with this form of immunotherapy in patients with AML.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3611-3611
Author(s):  
Stuart T. Fraser ◽  
Joan Isern ◽  
Margaret H. Baron

Abstract Primitive erythroid cells (EryP) are the first hematopoietic cell type to mature during embryonic development. EryP are characterized by expression of “embryonic” ε- and βh1-globin genes that are not expressed in fetal liver-derived “adult type” or definitive erythroid cells. Although EryP constitute the majority of the blood cells in mid-gestation embryos, EryP maturation remains poorly defined. Here, we utilize a transgenic mouse line in which green fluorescence protein (GFP) expression is driven by the human ε-globin minimal promoter to characterize the development of circulating EryP throughout embryogenesis. ε-globin(+)/GFP(+) EryP appear from 7.5 dpc within blood islands of the yolk sac. As expected, at 9.5 dpc, essentially all circulating blood cells express GFP. By 14.5 dpc, only 50% of the circulating cells express GFP. This sharp decrease in the numbers of circulating ε-globin(+)/GFP(+) cells continues until birth, by which stage fewer than 1% express the reporter gene. To further characterize the maturation of EryP, we analyzed the expression of surface antigens on ε-globin(+)/GFP(+) cells at various stages of embryonic development. From 9.5 dpc onwards, ε-globin(+)/GFP(+) cells express increasing levels of the erythroid marker Ter-119. The transferrin receptor CD71 is also expressed from early stages of development but is down-regulated as ε-globin(+)/GFP(+) cells mature. Increasing Ter-119 expression with concomitant loss of CD71 have previously been reported as hallmarks of maturing fetal liver erythroid cells (EryD) and we now report that ε-globin(+)/GFP(+) EryP demonstrate a similar developmental progression. Therefore, EryP contribute to the Ter119 and CD71 expression reported by others for total embryonic peripheral blood cells. The GPI-anchored surface marker CD24, present on EryD, is also found on ε-globin(+)/GFP(+) EryP. Interestingly, expression of the adhesion molecules CD44 and α4-integrin was upregulated on maturing ε-globin(+)/GFP(+) EryP, perhaps reflecting a requirement for interaction of EryP with other cells. ε-globin(+)/GFP(+) EryP lack expression of surface antigens typical of endothelial cells (Flk1, VCAM1), hematopoietic stem cells (c-kit, Sca1, CXCR4), myeloid (Gr1, Mac1) and lymphoid cells (CD19, CD3). Together, these data help to define the maturation pathway of the primitive erythroid lineage. It was recently shown by immunohistology that murine EryP enucleate, similar to their definitive counterparts. We used the cell permeable DNA-binding dye Draq5 to quantify enucleation in the circulating ε-globin(+)/GFP(+) population by FACS. We show that enucleated ε-globin(+)/GFP(+) cells are Draq5low/neg whereas those bearing nuclei are Draq5high. At 9.5 dpc, ε-globin(+)/GFP(+) cells are Draq5high. The frequency of nucleated EryPs decreases rapidly such that by 14.5 dpc, half of the circulating e-globin(+)/GFP(+) cells are Draq5low/neg. Shortly before birth, almost all EryP have enucleated. This system will allow us to separate nucleated from enucleated EryP by cell sorting and will help us assess changes in surface antigen expression during EryP maturation and enucleation. The human ε-globin-GFP transgenic mouse model is therefore a useful system for defining, at the cellular and molecular level, the developmental pathways of the primitive erythroid lineage.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 727-727 ◽  
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Stefan Butz ◽  
Koichi Kokame ◽  
Paul W Kincade ◽  
...  

Abstract Hematopoietic stem cells (HSC) are an important cell type with the capacity for self-renewal as well as differentiation into multi-lineage blood cells, maintaining the immune system throughout life. Many studies have attempted to identify unique markers associated with these extremely rare cells. In bone marrow of adult mice, the Lin-c-kitHi Sca1+ CD34−/Lo Thy1.1Lo subset is known to include HSC with long-term repopulating capacity. However, several of these parameters differ between strains of mice, change dramatically during developmental age and/or are expressed on many non-HSC during inflammation. Efficient HSC-based therapies and the emerging field of regenerative medicine will benefit from learning more about what defines stem cells. We previously determined that the most primitive cells with lymphopoietic potential first develop in the paraaortic splanchnopleura/aorta-gonad-mesonephros (AGM) region of embryos using Rag1/GFP knock-in mice. We also reported that Rag1/GFP-c-kitHi Sca1+ cells derived from E14.5 fetal liver (FL) reconstituted lympho-hematopoiesis in lethally irradiated adults, while Rag1/GFPLo c-kitHi Sca1+ cells transiently contributed to T and B lymphopoiesis. To extend those findings, microarray analyses were conducted to search for genes that characterize the initial transition of fetal HSC to primitive lymphopoietic cells. The comparisons involved mRNA from Rag1Lo ckitHi Sca1+, early lymphoid progenitors (ELP) and the HSC-enriched Rag1-ckitHi Sca1+ fraction isolated from E14.5 FL. While genes potentially related to early lymphopoiesis were discovered, our screen also identified genes whose expression seemed to correlate with HSC. Among those, endothelial cell-selective adhesion molecule (ESAM) attracted attention because of its conspicuous expression in the HSC fraction and sharp down-regulation on differentiation to ELP. ESAM was originally identified as an endothelial cell-specific protein, but expression on megakaryocytes and platelets was also reported (J. Biol. Chem., 2001, 2002). Flow cytometry analyses with anti-ESAM antibodies showed that the HSC-enriched Rag1-c-kitHi Sca1+ fraction could be subdivided into two on the basis of ESAM levels. The subpopulation with the high density of ESAM was enriched for c-kitHi Sca1Hi cells, while ones with negative or low levels of ESAM were found in the c-kitHi Sca1Lo subset. Among endothelial-related antigens on HSC, CD34 and CD31/PECAM1 were uniformly present on Rag1-c-kitHi Sca1+ cells in E14.5 FL and neither resolved into ESAMHi and ESAM−/Lo fractions. Expression profiles of Endoglin and Tie2 partially correlate with ESAM. The primitive ESAMHi fraction uniformly expressed high levels of Endoglin and Tie2, but many of the more differentiated ESAM−/Lo cells still retained the two markers. ESAM expression correlated well with HSC activity. Cells in the ESAMHi Rag1-ckitHi Sca1+ fraction formed more and larger colonies than those in the ESAM-/Lo Rag1-ckitHi Sca1+ fraction. Particularly, most CFU-Mix, primitive progenitors with both myeloid and erythroid potential, were found in the ESAMHi fraction. In limiting dilution stromal cell co-cultures, we found that 1 in 2.1 ESAMHi Rag1-ckitHi Sca1+ cells and 1 in 3.5 ESAM−/Lo Rag1-ckitHi Sca1+ cells gave rise to blood cells. However, while only 1 in 125 ESAM−/Lo Rag1-ckitHi Sca1+ cells were lymphopoietic under these conditions, 1 in 8 ESAMHi Rag1-ckitHi Sca1+ cells produced CD19+ B lineage cells. In long-term reconstituting assays, ESAMHi Rag1-ckitHi Sca1+ cells contributed highly to the multi-lineage recovery of lympho-hematopoiesis in recipients, but no chimerism was detected in mice transplanted with ESAM−/Lo Rag1-ckitHi Sca1+ cells. These results suggested that HSC in E14.5 FL are exclusively present in the ESAMHi fraction. Tie2+ c-kit+ lympho-hematopoietic cells of E10.5 AGM also expressed high levels of ESAM. Furthermore, ESAM expression in adult bone marrow was detected on primitive progenitors and cells in the side population within the Lin-ckitHi Sca1+ fraction. Interestingly, the expression was up-regulated in aged mice. Based on these observations, we conclude that ESAM marks HSC throughout life in mice. We also observed that many of human cord blood CD34+ CD38− cells express ESAM, suggesting potential application for the purification of human HSC.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1505-1511 ◽  
Author(s):  
Philip Jones ◽  
Gill May ◽  
Lyn Healy ◽  
John Brown ◽  
Gerald Hoyne ◽  
...  

Abstract The Notch signaling system regulates proliferation and differentiation in many tissues. Notch is a transmembrane receptor activated by ligands expressed on adjacent cells. Hematopoietic stem cells and early progenitors express Notch, making the stromal cells which form cell-cell contacts with progenitor cells candidate ligand-presenting cells in the hematopoietic microenvironment. Therefore, we examined primary stromal cell cultures for expression of Notch ligands. Using reverse transcription-polymerase chain reaction, in situ hybridization, immunohistochemistry, and Western blotting, we demonstrate expression of Jagged 1 in primary stromal cultures. To investigate if the stromal expression of Jagged 1 has functional effects on hematopoietic progenitors, we cultured CD34+, c-kit+ hematopoietic progenitor cells derived from the aorto gonadal mesonephros region of day 11 mouse embryos on the Jagged 1− stromal cell line S17 and on S17 cells engineered to express Jagged 1. The presence of Jagged 1 increased the number of colonies formed in subsequent methylcellulose culture fourfold. Larger increases in colony numbers were observed under the same culture conditions with CD34+, c-kit+ hematopoietic progenitor cells derived from d11 fetal liver. These results obtained in vitro table Jagged 1 as a candidate regulator of stem cell fate in the context of stromal microenvironments in vivo. © 1998 by The American Society of Hematology.


2017 ◽  
Vol 37 (19) ◽  
Author(s):  
Ioanna Peraki ◽  
James Palis ◽  
George Mavrothalassitis

ABSTRACT Erf is a gene for a ubiquitously expressed Ets DNA-binding domain-containing transcriptional repressor. Erf haploinsufficiency causes craniosynostosis in humans and mice, while its absence in mice leads to failed chorioallantoic fusion and death at embryonic day 10.5 (E10.5). In this study, we show that Erf is required in all three waves of embryonic hematopoiesis. Mice lacking Erf in the embryo proper exhibited severe anemia and died around embryonic day 14.5. Erf epiblast-specific knockout embryos had reduced numbers of circulating blood cells from E9.5 onwards, with the development of severe anemia by E14.5. Elimination of Erf resulted in both reduced and more immature primitive erythroblasts at E9.5 to E10.5. Reduced definitive erythroid colony-forming activity was found in the bloodstream of E10.5 embryos and in the fetal liver at E11.5 to E13.5. Finally, elimination of Erf resulted in impaired repopulation ability, indicating that Erf is necessary for hematopoietic stem cell maintenance or differentiation. We conclude that Erf is required for both primitive and erythromyeloid progenitor waves of hematopoietic stem cell (HSC)-independent hematopoiesis as well as for the normal function of HSCs.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 3871-3874 ◽  
Author(s):  
Thorsten M. Schlaeger ◽  
Hanna K. A. Mikkola ◽  
Christos Gekas ◽  
Hildur B. Helgadottir ◽  
Stuart H. Orkin

AbstractThe stem-cell leukemia gene (SCL/tal1) is essential for the formation of all blood lineages. SCL is first expressed in mesodermal cells that give rise to embryonic blood cells, and continues to be expressed in fetal and adult hematopoietic stem cells (HSCs). However, SCL is not required for the maintenance of established long-term repopulating (LTR) HSCs in the adult. The time point at which HSC development becomes SCL independent has not been defined. Tyrosine kinase with immunoglobulin and epidermal growth factor homology domains–2 (Tie2) expression appears in hemogenic and vasculogenic sites shortly after SCL. We therefore used the Tie2Cre mouse to inactivate SCL early during embryonic and fetal hematopoiesis. Tie2Cre completely inactivated SCL in yolk sac, the aortagonad-mesonephros (AGM) region, and fetal liver hematopoietic cells and circulating blood cells. However, the fetal liver was colonized by functional LTR-HSCs. Yet SCL remained crucial for proper differentiation of both primitive and definitive red cells and megakaryocytes. These results indicate that the SCL-dependent phase of HSC development ends before Tie2Cre-mediated gene ablation becomes effective.


Sign in / Sign up

Export Citation Format

Share Document