scholarly journals Multispectral Imaging Using Fluorescent Properties of Indocyanine Green and Methylene Blue in Colorectal Surgery—Initial Experience

2022 ◽  
Vol 11 (2) ◽  
pp. 368
Author(s):  
Wojciech Polom ◽  
Marcin Migaczewski ◽  
Jaroslaw Skokowski ◽  
Maciej Swierblewski ◽  
Tomasz Cwalinski ◽  
...  

Introduction: Image-guided surgery is becoming a new tool in colorectal surgery. Intraoperative visualisation of different structures using fluorophores helps during various steps of operations. In our report, we used two fluorophores—indocyanine green (ICG), and methylene blue (MB)—during different steps of colorectal surgery, using one camera system for two separate near-infrared wavelengths. Material and methods: Twelve patients who underwent complex open or laparoscopic colorectal surgeries were enrolled. Intravenous injections of MB and ICG at different time points were administered. Visualisation of intraoperative ureter position and fluorescent angiography for optimal anastomosis was performed. A retrospective analysis of patients treated in our departments during 2020 was performed, and data about ureter injury and anastomotic site complications were collected. Results: Intraoperative localisation of ureters with MB under fluorescent light was possible in 11 patients. The mean signal-to-background ratio was 1.58 ± 0.71. Fluorescent angiography before performing anastomosis using ICG was successful in all 12 patients, and none required a change in position of the planned colon resection for anastomosis. The median signal-to-background ratios was 1.25 (IQR: 1.22–1.89). Across both centres, iatrogenic injury of the ureter was found in 0.4% of cases, and complications associated with anastomosis was found in 5.5% of cases. Conclusions: Our study showed a substantial opportunity for using two different fluorophores in colorectal surgery, whereby the visualisation of one will not change the possible quantification analysis of the other. Using two separate dyes during one procedure may help in optimisation of the fluorescent properties of both dyes when using them for different applications. Visualisation of different structures by different fluorophores seems to be the future of image-guided surgery, and shows progress in optical technologies used in image-guided surgery.

2014 ◽  
Vol 42 (6) ◽  
pp. 835-838 ◽  
Author(s):  
Junkichi Yokoyama ◽  
Shinichi Ooba ◽  
Mitsuhisa Fujimaki ◽  
Takashi Anzai ◽  
Ryota Yoshii ◽  
...  

2017 ◽  
Vol 13 (6) ◽  
pp. 746-754 ◽  
Author(s):  
Toshihiro Takami ◽  
Kentaro Naito ◽  
Toru Yamagata ◽  
Nobuyuki Shimokawa ◽  
Kenji Ohata

Abstract BACKGROUND Intraoperative image guidance using near-infrared indocyanine green videoangiography (ICG-VA) has been used to provide real-time angiographic images during vascular or brain tumor surgery, and it is also being used for spine surgery. OBJECTIVE To further investigate the benefits and limitations of ICG-VA image-guided surgery for spinal intramedullary tumors through retrospective study. METHODS ICG-VA was used in 48 cases that were treated surgically over the past 5 yr. The pathological diagnoses of the tumors included astrocytic tumor, ependymal tumor, cavernous malformation, and hemangioblastoma. RESULTS Localization of normal spinal arteries and veins on the dorsal surface of the spinal cord helped the surgeons determine the length or point of myelotomy. Well-demarcated tumor stain was recognized in limited cases of anaplastic or highly vascularized tumors, whereas the location of cavernous malformation was recognized as an avascular area on the dorsal surface of the spinal cord. Feeding arteries and tumor stain were well differentiated from draining veins in dorsal hemangioblastomas, but not in intramedullary deep-seated or ventral tumors. The preservation of small perforating branches of the anterior spinal artery after successful resection of the tumor could be well visualized. CONCLUSION ICG-VA can provide real-time information about vascular flow dynamics during the surgery of spinal intramedullary tumors, and it may help surgeons localize the normal circulation of the spinal cord, as well as the feeding arteries and draining veins, especially in highly vascular tumors. However, the benefits of intraoperative ICG-VA might be limited for intramedullary deep-seated or ventral tumors.


2018 ◽  
Vol 23 (5) ◽  
pp. 309
Author(s):  
Satoru Seo ◽  
Rei Toda ◽  
Hiroto Nishino ◽  
Ken Fukumitsu ◽  
Takamichi Ishii ◽  
...  

2015 ◽  
Author(s):  
Leonora S. F. Boogerd ◽  
Henricus J. M. Handgraaf ◽  
Cornelis J. H. van de Velde ◽  
Alexander L. Vahrmeijer

2019 ◽  
Vol 22 (4) ◽  
pp. 891-903 ◽  
Author(s):  
Nicholas E. Wojtynek ◽  
Madeline T. Olson ◽  
Timothy A. Bielecki ◽  
Wei An ◽  
Aaqib M. Bhat ◽  
...  

Methods ◽  
2001 ◽  
Vol 25 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Richard D. Bucholz ◽  
Kurt R. Smith ◽  
Keith A. Laycock ◽  
Leslie L. McDurmont

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojing Shi ◽  
Caiguang Cao ◽  
Zeyu Zhang ◽  
Jie Tian ◽  
Zhenhua Hu

AbstractCerenkov luminescence imaging (CLI) is a novel optical imaging technique that has been applied in clinic using various radionuclides and radiopharmaceuticals. However, clinical application of CLI has been limited by weak optical signal and restricted tissue penetration depth. Various fluorescent probes have been combined with radiopharmaceuticals for improved imaging performances. However, as most of these probes only interact with Cerenkov luminescence (CL), the low photon fluence of CL greatly restricted it’s interaction with fluorescent probes for in vivo imaging. Therefore, it is important to develop probes that can effectively convert energy beyond CL such as β and γ to the low energy optical signals. In this study, a Eu3+ doped gadolinium oxide (Gd2O3:Eu) was synthesized and combined with radiopharmaceuticals to achieve a red-shifted optical spectrum with less tissue scattering and enhanced optical signal intensity in this study. The interaction between Gd2O3:Eu and radiopharmaceutical were investigated using 18F-fluorodeoxyglucose (18F-FDG). The ex vivo optical signal intensity of the mixture of Gd2O3:Eu and 18F-FDG reached 369 times as high as that of CLI using 18F-FDG alone. To achieve improved biocompatibility, the Gd2O3:Eu nanoparticles were then modified with polyvinyl alcohol (PVA), and the resulted nanoprobe PVA modified Gd2O3:Eu (Gd2O3:Eu@PVA) was applied in intraoperative tumor imaging. Compared with 18F-FDG alone, intraoperative administration of Gd2O3:Eu@PVA and 18F-FDG combination achieved a much higher tumor-to-normal tissue ratio (TNR, 10.24 ± 2.24 vs. 1.87 ± 0.73, P = 0.0030). The use of Gd2O3:Eu@PVA and 18F-FDG also assisted intraoperative detection of tumors that were omitted by preoperative positron emission tomography (PET) imaging. Further experiment of image-guided surgery demonstrated feasibility of image-guided tumor resection using Gd2O3:Eu@PVA and 18F-FDG. In summary, Gd2O3:Eu can achieve significantly optimized imaging property when combined with 18F-FDG in intraoperative tumor imaging and image-guided tumor resection surgery. It is expected that the development of the Gd2O3:Eu nanoparticle will promote investigation and application of novel nanoparticles that can interact with radiopharmaceuticals for improved imaging properties. This work highlighted the impact of the nanoprobe that can be excited by radiopharmaceuticals emitting CL, β, and γ radiation for precisely imaging of tumor and intraoperatively guide tumor resection.


Head & Neck ◽  
2021 ◽  
Author(s):  
Sarah Y. Bessen ◽  
Xiaotian Wu ◽  
Michael T. Sramek ◽  
Yuan Shi ◽  
David Pastel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document