scholarly journals Numerical Application of Effective Thickness Approach to Box Aluminium Sections

2021 ◽  
Vol 5 (11) ◽  
pp. 291
Author(s):  
Elide Nastri ◽  
Vincenzo Piluso ◽  
Alessandro Pisapia

The ultimate behaviour of aluminium members subjected to uniform compression or bending is strongly influenced by local buckling effects which occur in the portions of the section during compression. In the current codes, the effective thickness method (ETM) is applied to evaluate the ultimate resistance of slender cross-sections affected by elastic local buckling. In this paper, a recent extension of ETM is presented to consider the local buckling effects in the elastic-plastic range and the interaction between the plate elements constituting the cross-section. The theoretical results obtained with this approach, applied to box-shaped aluminium members during compression or in bending, are compared with the experimental tests provided in the scientific literature. It is observed that the ETM is a valid and accurate tool for predicting the maximum resistance of box-shaped aluminium members during compression or in bending.

2020 ◽  
Vol 10 (13) ◽  
pp. 4461 ◽  
Author(s):  
Andrzej Szychowski ◽  
Karolina Brzezińska

In modern steel construction, thin-walled elements with Class 4 cross-sections are commonly used. For the sake of the computation of such elements according to European Eurocode 3 (EC3), simplified computational models are applied. These models do not account for important parameters that affect the behavior of a structure susceptible to local stability loss. This study discussed the effect of local buckling on the design ultimate resistance of a continuous beam with a thin-walled Class 4 I-shaped cross-section. In the investigations, a more accurate computational model was employed. A new calculation model was proposed, based on the analysis of local buckling separately for the span segment and the support segment of the first span, which are characterized by different distributions of bending moments. Critical stress was determined using the critical plate method (CPM), taking into account the effect of the mutual elastic restraint of the cross-section walls. The stability analysis also accounted for the effect of longitudinal stress variation resulting from the varied distribution of bending moments along the continuous beam length. The results of the calculations were compared with the numerical simulations using the finite element method. The obtained results showed very good congruence. The phenomena mentioned above are not taken into consideration in the computational model provided in EC3. Based on the critical stress calculated as above, “local” critical moments were determined. These constitute a limit on the validity of the Vlasov theory of thin-walled bars. Design ultimate resistance of the I-shaped cross-section was determined from the plastic yield condition of the most compressed edge under the assumptions specified in the study. Detailed calculations were performed for I-sections welded from thin metal sheets, and for sections made from two cold-formed channels (2C). The impact of the following factors on the critical resistance and design ultimate resistance of the midspan and support cross-sections was analyzed: (1) longitudinal stress variation, (2) relative plate slenderness of the flange, and (3) span length of the continuous beam. The results were compared with the outcomes obtained for box sections with the same contour dimensions, and also with those produced acc. EC3. It was shown that compared with calculations acc. EC3, those performed in accordance with the CPM described much more accurately the behavior of the uniformly loaded continuous beam with a thin-walled section. This could lead to a more effective design of structures of this class.


CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 632-651
Author(s):  
Evangelia Georgantzia ◽  
Michaela Gkantou ◽  
George S. Kamaris

Research studies have been reported on aluminium alloy tubular and doubly symmetric open cross-sections, whilst studies on angle cross-sections remain limited. This paper presents a comprehensive numerical study on the response of aluminium alloy angle stub columns. Finite element models are developed following a series of modelling assumptions. Geometrically and materially nonlinear analyses with imperfections included are executed, and the obtained results are validated against experimental data available in the literature. Subsequently, a parametric study is carried out to investigate the local buckling behaviour of aluminium alloy angles. For this purpose, a broad range of cross-sectional aspect ratios, slenderness and two types of structural aluminium alloys are considered. Their effect on the cross-sectional behaviour and strength is discussed. Moreover, the numerically obtained ultimate strengths together with literature test data are utilised to assess the applicability of the European design standards, the American Aluminium Design Manual and the Continuous Strength Method to aluminium alloy angles. The suitability of the Direct Strength Method is also evaluated and a modified method is proposed to improve the accuracy of the strength predictions.


2014 ◽  
Vol 919-921 ◽  
pp. 1794-1800
Author(s):  
Xin Zhi Zheng ◽  
Xin Hua Zheng

Abstract: 7 square steel tubular columns were tested to discuss the ultimate axial bearing capacity, ductility performance and the steel consumption under stiffened by steel belts and binding bars of different cross-sections. Test results indicate that only by increasing fewer amounts of steel usage, stiffened square CFST columns with binding bars can not only improve the overall effects of restraint and alleviate regional local buckling between the binding bars, but also improve the bearing capacity of concrete filled square steel tubular columns. The utility benefits and the economical benefit is considerable, deserving extensive use.


Author(s):  
Denis A. Melnikov ◽  
◽  
Tatyana L. Dmitrieva ◽  

The paper aims to study the actual operation of a rigid frame unit for coupling a crossbar with a column on high-strength bolts according to the standard 2.440-2 series using modern software systems of the component finite element method. Special attention was paid to the operation of nodal elements, as well as their stress-strain state. Based on the results of static calculations, the cross-sections of the elements under consideration, as well as the components of the node (plates, bolts, seams, etc.) were selected from the tables of the standard series. Subsequently, using the component finite element method serving as the basis of the IDEA StatiСa software, all the components of the node were mod-elled with respect to acting forces. The conducted calculations confirmed the suitability of the obtained node model for identifying inconsistencies in the series and modern standards. Using stresses on plates, bolt and welding forces, as well as several forms of vibration to assess the stability of compo-nents, the applicability of the node in question in the proposed configuration was evaluated. It turned out that the node failed to meet modern standards in terms of design conditions. Moreover, the serial bolts were overloaded by almost 38%, and some welds approached the limit state. When used in real conditions, this can lead to serious losses, including human lives. Recommendations are given for changing the specific configuration of the node in order to protect it from the destruction of any nature, including local buckling failure.


Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 322-336
Author(s):  
Julia Orlik ◽  
Maxime Krier ◽  
David Neusius ◽  
Kathrin Pietsch ◽  
Olena Sivak ◽  
...  

In many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section, as well as their material properties. Textiles are thin plates made of thin long yarns in frictional contact with each other that are connected via a rule defined by a looping diagram. The yarns themselves are stretchable or non-stretchable. All these structural parameters of a textile define its macroscopic behavior. Its folding is determined by all these parameters and the kind of the boundary fixation or loading direction. The next influencing characteristic is the value of the loading. The same textile can behave similar to a shell and work just for bending, or behave as a membrane with large tension deformations under different magnitudes of the loading forces. In our research, bounds on the loading and frictional parameters for both types of behavior are found. Additionally, algorithms for the computation of effective textile properties based on the structural information are proposed. Further focus of our research is the nature of folding, induced by pre-strain in yarns and some in-plane restriction of the textile movements, or by the local knitting or weaving pattern and the yarn’s cross-sections. Further investigations concern different applications with spacer fabrics. Structural parameters influencing the macroscopic fabric behavior are investigated and a way for optimization is proposed. An overview of our published mathematical and numerical papers with developed algorithms is given and our numerical tools based on these theoretical results are demonstrated.


Author(s):  
Hervé Degée ◽  
Yves Duchêne ◽  
Benno Hoffmeister

The aim of the recently completed European research program Meakado is therefore to study design options with requirements proportioned to the actual seismic context of constructions in areas characterized by a low or moderate seismic hazard, contrary to most researches aiming at maximizing the seismic performances. In this general framework, specific investigations have been carried out regarding typical beam profiles commonly used for multi-bay - multi-storey composite frames. In a first stage, experimental tests on class-3 composite beam-to-column connections were performed. The measurement results were evaluated with regard to the development of the hysteretic behavior with particular emphasis on the degradation. These test results have been used as reference for the calibration and validation of numerical model aiming at extending the scope of the experimental outcomes through appropriate parametric variations regarding the behavior of nodal connections as well as towards the global analysis and behavior of structures made of class 3 and 4 profiles. Numerical investigations of the global performance of composite frames with slender cross-sections are then performed resorting to the numerical model previously calibrated with respect to the experimental tests and additional simulations at node level. Results are compared to the performance of an equivalent frame made of compact steel profiles. Attention is paid to the effects of strength and stiffness degradation due to local buckling. The analysis of the results is specifically focusing on the comparison of the rotation capacity of the slender section with the actual rotation demand imposed by a moderate intensity earthquake. Based on the outcomes of these investigations, practical design recommendations are finally derived for multi-storey, multi-bay moment resisting frames with type b (full composite action) beam-to column connections located in low and moderate seismicity regions. 


2016 ◽  
Vol 710 ◽  
pp. 357-362
Author(s):  
Irene Scheperboer ◽  
Evangelos Efthymiou ◽  
Johan Maljaars

Aluminium plates containing a single hole or multiple holes in a row are recently becoming very popular among architects and consultant engineers in many constructional applications, due to their reduced weight, as well as facilitating ventilation and light penetration of the buildings. However, there are still uncertainties concerning their structural behaviour, preventing them from wider utilization. In the present paper, local buckling phenomenon of perforated aluminium plates has been studied using the finite element method. For the purposes of the research work, plates with simply supported edges in the out-of-plane direction and subjected to uniaxial compression are examined. In view of perforations, circular cut-outs and the total cut-out size has been varied between 5 and 40% of the total plate area. Moreover, different perforation patterns have been investigated, from a single, central cut-out to a more refined pattern consisting of up to 25 holes equally distributed over the plate. Regarding the material characteristics, several aluminium alloys are considered and compared to steel grade A36 on plates of different slenderness. For each case the critical (Euler) buckling load and the ultimate resistance has been determined.A study into the boundary conditions of the plate showed that the restrictions at the edges parallel to the load direction have a large influence on the critical buckling load. Restraining the top or bottom edge does not significantly influence the resistance of the plate.The results showed that the ultimate resistance of aluminium plates containing multiple holes occurs at considerably larger out-of-plane displacement as that of full plates. For very large total cut-out, a plate containing a central hole has a larger resistance than a plate with equal cut-out percentage but with multiple holes. The strength and deformation in the post-critical regime, i.e. the difference between the critical buckling load and the ultimate resistance, differs significantly for different number of holes and cut-out percentage.


1989 ◽  
Vol 111 (3) ◽  
pp. 409-415 ◽  
Author(s):  
R. M. DeSantis

A classical PI speed drive controller modified with the parallel addition of an on-off switching element appears to offer a potential for reasonable improvement over the performance of the original version. This improvement is obtained by combining classical transfer function techniques, sliding mode systems ideas, and self-tuning. While theoretical results, extended simulations, and preliminary experimental tests are encouraging, they do suggest that in actual industrial applications performance improvement may be conditioned by the usage of better performing open loop components.


1993 ◽  
Vol 48 (3) ◽  
pp. 465-468
Author(s):  
V. M. Chhaya ◽  
J. J. Tarwadi ◽  
Smita Chhag

Abstract The unitarised Eikonal Born series (UEBS) method has been used successfully by Byron et al. for elastic scattering of electrons and positrons by hydrogen atoms. Here an attempt is made to apply the UEBS method in the case of elastic scattering of electrons by helium atoms. The total and differential cross sections are calculated for the energy range 100-700 eV. The results are compared with experimental and other theoretical results. It is found that the results obtained with the UEBS method agree best with the experimental results.


Lubricants ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 92
Author(s):  
Steven Chatterton ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

Tilting-pad journal bearings (TPJBs) are widely installed in rotating machines owing to their high stability, but some drawbacks can be noted, such as higher cost with respect to cylindrical journal bearings and thermal issues. High temperatures in the pads correspond to low oil-film thicknesses and large thermal deformations in the pads. Therefore, the restriction of the maximum temperature of the bearing is a key aspect for oil-film bearings. The temperature reduction is generally obtained by adopting higher oil inlet flowrates or suitable oil nozzles. In this paper, the idea of using cooled pads with internal channels in which an external cooling fluid is circulated will be applied to a TPJB for the first time. The three-dimensional TEHD model of the TPJB, equipped with a cooled pad, will be introduced, and the results of the numerical simulations will be discussed. Several analyses have been performed in order to investigate the influence of cooling conditions, such as the type, flowrate, inlet temperature and number of cooled pads. Two types of pad geometry with different cross-sections of the cooling circuit, namely, circular and six-square multi-channel sections, have been compared to the reference bearing with solid pads. Simple experimental tests were performed by means of a test rig equipped with a cooled pad bearing obtained with the additive manufacturing process, thus showing the effectiveness of the solution and the agreement with the predictions.


Sign in / Sign up

Export Citation Format

Share Document