scholarly journals Principles and Perspectives of Radiographic Imaging with Muons

2021 ◽  
Vol 7 (12) ◽  
pp. 253
Author(s):  
Luigi Cimmino

Radiographic imaging with muons, also called Muography, is based on the measurement of the absorption of muons, generated by the interaction of cosmic rays with the earth’s atmosphere, in matter. Muons are elementary particles with high penetrating power, a characteristic that makes them capable of crossing bodies of dimensions of the order of hundreds of meters. The interior of bodies the size of a pyramid or a volcano can be seen directly with the use of this technique, which can rely on highly segmented muon trackers. Since the muon flux is distributed in energy over a wide spectrum that depends on the direction of incidence, the main difference with radiography made with X-rays is in the source. The source of muons is not tunable, neither in energy nor in direction; to improve the signal-to-noise ratio, muography requires large instrumentation, long time data acquisition and high background rejection capacity. Here, we present the principles of the Muography, illustrating how radiographic images can be obtained, starting from the measurement of the attenuation of the muon flux through an object. It will then be discussed how recent technologies regarding artificial intelligence can give an impulse to this methodology in order to improve its results.

2020 ◽  
Vol 62 (6) ◽  
pp. 352-356
Author(s):  
E Yahaghi ◽  
M E Hosseini-Ashrafi

Weld quality inspection using industrial radiography is considered to be one of the most important processes in critical industries such as aeronautical manufacturing. The quality of radiographic images of welded industrial parts may suffer from poor signal-to-noise ratio (SNR), the main cause of which is the unavoidable detection of scattered X-rays. Image processing methods may be used to enhance image contrast and achieve improved defect detection. In this study, the outcomes from three different image contrast enhancement spatial domain transform algorithms are analysed and compared. The three algorithms used are normalised convolution (NC), interpolated convolution (IC) and recursive filtering (RF). Based on the results of qualitative operator perception, the study shows that the application of all three methods results in improved image contrast, enabling enhanced visualisation of image detail. Subtle differences in performance between the outputs from the different algorithms are noted, especially around the edges of image features. Furthermore, it is found that RF is approximately two orders of magnitude quicker than the other algorithms, making it more suitable for online weld inspection lines.


Author(s):  
Arockia Sukanya ◽  
Kamalanand Krishnamurthy ◽  
Thayumanavan Balakrishnan

Various dental disorders, such as lesions, masses, carries, etc. may affect the human dental structure. Dental radiography is a technique, which passes X-rays through dental structures and records the radiographic images. These radiographic images are used to analyze the disorders present in the human teeth. Preprocessing is a primary step to enhance the radiographic images for further segmentation and classification of images. In this work, the preprocessing techniques such as unsharp masking using high pass filter, bi-level histogram equalization and hybrid metaheuristic have been utilized for dental radiographs. The performance measures of the preprocessing techniques were analyzed. Results demonstrate that a hybrid metaheuristic algorithm for dental radiographs achieves higher performance measures when compared to other enhancement methods. An average Peak Signal-to-Noise Ratio (PSNR) value of 21.6 was observed in the case of a hybrid metaheuristic technique for dental image enhancement.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ankita RayChowdhury ◽  
Ankita Pramanik ◽  
Gopal Chandra Roy

AbstractThis paper presents an approach to access real time data from underground mine. Two advance technologies are presented that can improve the adverse environmental effect of underground mine. Visible light communication (VLC) technology is incorporated to estimate the location of miners inside the mine. The distribution of signal to noise ratio (SNR) for VLC system is also studied. In the second part of the paper, long range (LoRa) technology is introduced for transmitting underground information to above the surface control room. This paper also includes details of the LoRa technology, and presents comparison of ranges with existing above the surface technologies.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
A Aljawadi ◽  
I Madhi ◽  
T Naylor ◽  
M Elmajee ◽  
A Islam ◽  
...  

Abstract Background Management of traumatic bone void associated with Gustilo IIIB open fractures is challenging. Gentamicin eluting synthetic bone graft substitute (Cerament-G) had been recently utilised for the management of patients with these injuries. This study aims to assess radiological signs of Cerament-G remodelling. Method Retrospective data analysis of all patients admitted to our unit with IIIB open fractures who had Cerament-G applied as avoid filler. Postoperative radiographic images of the fracture site at 6-weeks, 3-months, 6-months and at the last follow-up were reviewed. The radiological signs of Cerament-G integration, percent of void healing, and bone cortical thickness at the final follow-up were assessed. Results 34 patients met our inclusion criteria, mean age: 42 years. Mean follow-up time was 20 months. 59% of patients had excellent (>90%) void filling, 26.4% of patients had 50-90% void filling, and 14.6% had < 50% void filling. Normal bone cortical thickness was restored on AP and Lateral views in 55.8% of patients. No residual Cerement-G was seen on X-rays at the final follow-up in any of the patients. Conclusions Our results showed successful integration of Cerament-G with excellent void filling and normal cortical thickness achieved in more than half of the patients.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2021 ◽  
Vol 11 (13) ◽  
pp. 6179
Author(s):  
Felix Lehmkühler ◽  
Wojciech Roseker ◽  
Gerhard Grübel

X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.


Scientifica ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Shintaro Sasuga ◽  
Toshiya Osada

G protein-coupled receptors (GPCRs) are associated with a great variety of biological activities. Yeasts are often utilized as a host for heterologous GPCR assay. We engineered the intense reporter plasmids for fission yeast to produce green fluorescent protein (GFP) through its endogenous GPCR pathway. As a control region of GFP expression on the reporter plasmid, we focused on seven endogenous genes specifically activated through the pathway. When upstream regions of these genes were used as an inducible promoter in combination with LPI terminator, themam2upstream region produced GFP most rapidly and intensely despite the high background. Subsequently, LPI terminator was replaced with the corresponding downstream regions. The SPBC4.01 downstream region enhanced the response with the low background. Furthermore, combining SPBC4.01 downstream region with the sxa2 upstream region, the signal to noise ratio was obviously better than those of other regions. We also evaluated the time- and dose-dependent GFP productions of the strains transformed with the reporter plasmids. Finally, we exhibited a model of simplified GPCR assay with the reporter plasmid by expressing endogenous GPCR under the control of the foreign promoter.


2018 ◽  
Vol 170 ◽  
pp. 09005 ◽  
Author(s):  
M.-L. Gallin-Martel ◽  
L. Abbassi ◽  
A. Bes ◽  
G. Bosson ◽  
J. Collot ◽  
...  

The MoniDiam project is part of the French national collaboration CLaRyS (Contrôle en Ligne de l’hAdronthérapie par RaYonnements Secondaires) for on-line monitoring of hadron therapy. It relies on the imaging of nuclear reaction products that is related to the ion range. The goal here is to provide large area beam detectors with a high detection efficiency for carbon or proton beams giving time and position measurement at 100 MHz count rates (beam tagging hodoscope). High radiation hardness and intrinsic electronic properties make diamonds reliable and very fast detectors with a good signal to noise ratio. Commercial Chemical Vapor Deposited (CVD) poly-crystalline, heteroepitaxial and monocrystalline diamonds were studied. Their applicability as a particle detector was investigated using α and β radioactive sources, 95 MeV/u carbon ion beams at GANIL and 8.5 keV X-ray photon bunches from ESRF. This facility offers the unique capability of providing a focused (~1 μm) beam in bunches of 100 ps duration, with an almost uniform energy deposition in the irradiated detector volume, therefore mimicking the interaction of single ions. A signal rise time resolution ranging from 20 to 90 ps rms and an energy resolution of 7 to 9% were measured using diamonds with aluminum disk shaped surface metallization. This enabled us to conclude that polycrystalline CVD diamond detectors are good candidates for our beam tagging hodoscope development. Recently, double-side stripped metallized diamonds were tested using the XBIC (X Rays Beam Induced Current) set-up of the ID21 beamline at ESRF which permits us to evaluate the capability of diamond to be used as position sensitive detector. The final detector will consist in a mosaic arrangement of double-side stripped diamond sensors read out by a dedicated fast-integrated electronics of several hundreds of channels.


Rheumatology ◽  
2021 ◽  
Vol 60 (Supplement_1) ◽  
Author(s):  
Nicholas R Fuggle ◽  
Diogo Pinto Pereira ◽  
Elaine M Dennison ◽  
Cyrus Cooper ◽  
Sasan Mahmoodi

Abstract Background/Aims  Osteoarthritis is the most common joint disease and is associated with substantial morbidity for the affected individual and a significant financial burden for the health system at large. There is a marked discrepancy between the extent of osteoarthritis observed via plain radiography and the magnitude of clinical symptoms. For this reason we aimed to investigate whether, using an artificial intelligence approach, we could train an algorithm to diagnose osteoarthritis and if we were able to find correlations between clinical symptoms and radiographic images. Methods  Anterior-posterior and lateral radiographic images of the knees and hips were ascertained from members of the Hertfordshire Cohort Study (HCS, a group of community-dwelling older adults in the UK) and were merged with anterior-posterior knee X-rays obtained from Mendeley (a repository of open-access images). The HCS contributed 1,445 images, which were equally split into training and testing sets, and the Mendeley cohort provided 2,889 training and 828 testing radiographs. The radiographic images were passed through a detection network in order to identify the region of interest (the knee or hip joint), thereby streamlining the necessary information in the image. Next, a classification network was trained with the goal of differentiating the Kellgren and Lawrence (KL) grade for each joint. Finally, the clinical symptoms and radiographic grading was subject to pairwise correlation, using Spearman rank-order correlation. Results  The HCS sample included 222 males and 221 females with a mean age of 76 years (SD 2.6). In terms of detection of the join, an average accuracy of 99% was achieved. The classification task utilised alternative evaluation metrics, with the best network achieving 58% accuracy, 63% average precision and 61% average recall in the KL grading task. Superior results were obtained with knee joints than hips. However, when using the dichotomous outcomes of ‘osteoarthritis’ (defined by a KL ≥ 2) or ‘no osteoarthritis’, the results significantly improved, obtaining an accuracy of 81.2%. Significant correlations were observed between the majority of pain symptoms and the radiograph images, with the strongest correlations seen at the knees with; pain going up or down stairs (rho 0.30), pain standing upright (rho 0.30), pain walking on hard surface (rho 0.28), pain walking on uneven surface (rho 0.31) and pain standing from chair (rho -0.30). Conclusion  To conclude, in this pilot study, we have trained an algorithm, to diagnose osteoarthritis of the knees and hips with limited accuracy. We have also demonstrated moderate correlations with some specific pain symptoms. It will be interesting to see whether these initial findings are replicated as we expand this project into other cohorts. Disclosure  N.R. Fuggle: None. D. Pinto Pereira: None. E.M. Dennison: None. C. Cooper: None. S. Mahmoodi: None.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Ding ◽  
Yunhua Zhang ◽  
Vincent Fusco

A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.


Sign in / Sign up

Export Citation Format

Share Document