scholarly journals Pattern Recognition in Multivariate Time Series: Towards an Automated Event Detection Method for Smart Manufacturing Systems

2020 ◽  
Vol 4 (3) ◽  
pp. 88 ◽  
Author(s):  
Vadim Kapp ◽  
Marvin Carl May ◽  
Gisela Lanza ◽  
Thorsten Wuest

This paper presents a framework to utilize multivariate time series data to automatically identify reoccurring events, e.g., resembling failure patterns in real-world manufacturing data by combining selected data mining techniques. The use case revolves around the auxiliary polymer manufacturing process of drying and feeding plastic granulate to extrusion or injection molding machines. The overall framework presented in this paper includes a comparison of two different approaches towards the identification of unique patterns in the real-world industrial data set. The first approach uses a subsequent heuristic segmentation and clustering approach, the second branch features a collaborative method with a built-in time dependency structure at its core (TICC). Both alternatives have been facilitated by a standard principle component analysis PCA (feature fusion) and a hyperparameter optimization (TPE) approach. The performance of the corresponding approaches was evaluated through established and commonly accepted metrics in the field of (unsupervised) machine learning. The results suggest the existence of several common failure sources (patterns) for the machine. Insights such as these automatically detected events can be harnessed to develop an advanced monitoring method to predict upcoming failures, ultimately reducing unplanned machine downtime in the future.

2020 ◽  
Vol 6 (2) ◽  
pp. 195
Author(s):  
Hasrun Afandi Umpusinga ◽  
Atika Riasari ◽  
Fajrin Satria Dwi Kesumah

Indonesia is one of largest users of sharia-based compliant recently which bring into many concerns how the sharia stocks listing in the most valuable sharia stocks index in Indonesia perform and correlate with other variables, particularly exchange rates. The study aims to analysis the causal relationship and to forecast the performances of sharia-based stocks and its Islamic index in Indonesia along with the volatility of exchange rate. Vector Autoregressive (VAR) model is applied as the method to analyse the multivariate time series as it is believed as the suitable model in predicting such time-series data in the scope of multivariate variables. The finding suggests VAR(1) model is the fitted model as such to both analyse its dynamic relationship and forecast the data set for the next 24 weeks. While the prediction shows the JII has an increasing data, both ANTM and EXR are predicted to have a stable volatility. In addition, granger causality defines variables to have effect in its respective variables, and IRF describes the shocks in one variable cause another variable is relatively difficult in reaching its zero condition in short-term period.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alaa Sagheer ◽  
Mostafa Kotb

AbstractCurrently, most real-world time series datasets are multivariate and are rich in dynamical information of the underlying system. Such datasets are attracting much attention; therefore, the need for accurate modelling of such high-dimensional datasets is increasing. Recently, the deep architecture of the recurrent neural network (RNN) and its variant long short-term memory (LSTM) have been proven to be more accurate than traditional statistical methods in modelling time series data. Despite the reported advantages of the deep LSTM model, its performance in modelling multivariate time series (MTS) data has not been satisfactory, particularly when attempting to process highly non-linear and long-interval MTS datasets. The reason is that the supervised learning approach initializes the neurons randomly in such recurrent networks, disabling the neurons that ultimately must properly learn the latent features of the correlated variables included in the MTS dataset. In this paper, we propose a pre-trained LSTM-based stacked autoencoder (LSTM-SAE) approach in an unsupervised learning fashion to replace the random weight initialization strategy adopted in deep LSTM recurrent networks. For evaluation purposes, two different case studies that include real-world datasets are investigated, where the performance of the proposed approach compares favourably with the deep LSTM approach. In addition, the proposed approach outperforms several reference models investigating the same case studies. Overall, the experimental results clearly show that the unsupervised pre-training approach improves the performance of deep LSTM and leads to better and faster convergence than other models.


2021 ◽  
Vol 25 (5) ◽  
pp. 1051-1072
Author(s):  
Fabian Kai-Dietrich Noering ◽  
Konstantin Jonas ◽  
Frank Klawonn

In technical systems the analysis of similar load situations is a promising technique to gain information about the system’s state, its health or wearing. Very often, load situations are challenging to be defined by hand. Hence, these situations need to be discovered as recurrent patterns within multivariate time series data of the system under consideration. Unsupervised algorithms for finding such recurrent patterns in multivariate time series must be able to cope with very large data sets because the system might be observed over a very long time. In our previous work we identified discretization-based approaches to be very interesting for variable length pattern discovery because of their low computing time due to the simplification (symbolization) of the time series. In this paper we propose additional preprocessing steps for symbolic representation of time series aiming for enhanced multivariate pattern discovery. Beyond that we show the performance (quality and computing time) of our algorithms in a synthetic test data set as well as in a real life example with 100 millions of time points. We also test our approach with increasing dimensionality of the time series.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


2021 ◽  
Vol 11 (6) ◽  
pp. 2850
Author(s):  
Dalibor Dobrilovic ◽  
Vladimir Brtka ◽  
Zeljko Stojanov ◽  
Gordana Jotanovic ◽  
Dragan Perakovic ◽  
...  

The growing application of smart manufacturing systems and the expansion of the Industry 4.0 model have created a need for new teaching platforms for education, rapid application development, and testing. This research addresses this need with a proposal for a model of working environment monitoring in smart manufacturing, based on emerging wireless sensor technologies and the message queuing telemetry transport (MQTT) protocol. In accordance with the proposed model, a testing platform was developed. The testing platform was built on open-source hardware and software components. The testing platform was used for the validation of the model within the presented experimental environment. The results showed that the proposed model could be developed by mainly using open-source components, which can then be used to simulate different scenarios, applications, and target systems. Furthermore, the presented stable and functional platform proved to be applicable in the process of rapid prototyping, and software development for the targeted systems, as well as for student teaching as part of the engineering education process.


Sign in / Sign up

Export Citation Format

Share Document