scholarly journals Numerical Study on Regular Wave Shoaling, De-Shoaling and Decomposition of Free/Bound Waves on Gentle and Steep Foreshores

2020 ◽  
Vol 8 (5) ◽  
pp. 334 ◽  
Author(s):  
Mads Røge Eldrup ◽  
Thomas Lykke Andersen

Numerical tests are performed to investigate wave transformations of nonlinear nonbreaking regular waves with normal incidence to the shore in decreasing and increasing water depth. The wave height transformation (shoaling) of nonlinear waves can, just as for linear waves, be described by conservation of the mechanical energy flux. The numerical tests show that the mechanical energy flux for nonlinear waves on sloping foreshores is well described by stream function wave theory for horizontal foreshore. Thus, this theory can be used to estimate the shoaled wave height. Furthermore, the amplitude and the celerity of the wave components of nonlinear waves on mildly sloping foreshores can also be predicted with the stream function wave theory. The tests also show that waves propagating to deeper water (de-shoaling) on a very gentle foreshore with a slope of cot(β) = 1200 can be described in the same way as shoaling waves. For de-shoaling on steeper foreshores, free waves are released leading to waves that are not of constant form and thus cannot be modelled by the proposed approach.

Author(s):  
Morteza Anbarsooz ◽  
Ali Faramarzi ◽  
Amirmahdi Ghasemi

In the current study, a fully nonlinear two-dimensional numerical wave tank is developed using the commercial CFD software, Ansys Fluent 15.0, in order to study the absorption characteristics of an OWC at linear and highly nonlinear steep waves. The two-phase Volume-Of-Fluid (VOF) method is employed to predict the water free surface evolution. The numerical results are first validated against the available analytical data in the literature. The good agreement between the numerical results and those of analytics, revealed the capability of the developed numerical tank to study the performance of the OWC. Next, the simulations are performed for strongly nonlinear waves, up to the wave steepness of 0.069 (H/L=0.069), where H is the wave height and L is the wave length. The optimum pneumatic damping of the air turbine at such strongly steep and nonlinear waves is determined. Results show that the absorption efficiency of the OWC decreases considerably as the wave height increases. Moreover, the maximum wave energy absorption efficiency for the highly nonlinear waves occurs at a pneumatic damping coefficient lower than that of the linear theory.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 283
Author(s):  
Andrey Ustinov ◽  
Svetlana Khonina ◽  
Alexey Porfirev

Recently, there has been increased interest in the shaping of light fields with an inverse energy flux to guide optically trapped nano- and microparticles towards a radiation source. To generate inverse energy flux, non-uniformly polarized laser beams, especially higher-order cylindrical vector beams, are widely used. Here, we demonstrate the use of conventional and so-called generalized spiral phase plates for the formation of light fields with an inverse energy flux when they are illuminated with linearly polarized radiation. We present an analytical and numerical study of the longitudinal and transverse components of the Poynting vector. The conditions for maximizing the negative value of the real part of the longitudinal component of the Poynting vector are obtained.


2017 ◽  
Vol 24 (1) ◽  
pp. 152-167
Author(s):  
Izhak Bucher ◽  
Ran Gabai ◽  
Harel Plat ◽  
Amit Dolev ◽  
Eyal Setter

Vibrations are often represented as a sum of standing waves in space, i.e. normal modes of vibration. While this can be mathematically accurate, the representation as travelling waves can be compact and more appropriate from a physical point of view, in particular when the energy flux along the structure is meaningful. The quantification of travelling waves assists in computing the energy being transferred and propagated along a structure. It can provide local as well as global information about the structure through which the mechanical energy flows. Presented in this paper is a new method to quantify the fraction of mechanical power being transmitted in a vibration cycle at a specific direction in space using measured data. It is shown that the method can detect local defects causing slight non-uniformity of the energy flux. Equivalence is being made with the electrical power factor and electromagnetic standing waves ratio, commonly employed in such cases. Other methods to perform experiment based wave identification in one-dimension are compared with the power flow based identification. Including a signal processing approach that fits an ellipse to the complex amplitude curve and Hilbert transform for obtaining the local phase and amplitude. A new representation of the active and reactive power flow is developed and its relationship to standing waves ratio is demonstrated analytically and experimentally.


Geophysics ◽  
1973 ◽  
Vol 38 (3) ◽  
pp. 481-488 ◽  
Author(s):  
P. Newman

Of the various factors which influence reflection amplitudes in a seismic recording, divergence effects are possibly of least direct interest to the interpreter. Nevertheless, proper compensation for these effects is mandatory if reflection amplitudes are to be of diagnostic value. For an earth model consisting of horizontal, isotropic layers, and assuming a point source, we apply ray theory to determine an expression for amplitude correction factors in terms of initial incidence, source‐receiver offset, and reflector depth. The special case of zero offset yields an expression in terms of two‐way traveltime, velocity in the initial layer, and the time‐weighted rms velocity which characterizes reflections. For this model it follows that information which is needed for divergence compensation in the region of normal incidence is available from the customary analysis of normal moveout (NMO). It is hardly surprising that NMO and divergence effects are intimately related when one considers the expanding wavefront situation which is responsible for both phenomena. However, it is evident that an amplitude correction which is appropriate for the primary reflection sequence cannot in general be appropriate for the multiples. At short offset distances the disparity in displayed amplitude varies as the square of the ratio of primary to multiple rms velocities, and favors the multiples. These observations are relevant to a number of concepts which are founded upon plane‐wave theory, notably multiple attenuation processes and record synthesis inclusive of multiples.


2021 ◽  
Vol 407 ◽  
pp. 128-137
Author(s):  
Vinícius Bloss ◽  
Camila Fernandes Cardozo ◽  
Flávia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha

Theoretically, ocean waves contain enough mechanical energy to supply the entire world’s demand and, as of late, are seen as a promising source of renewable energy. To this end, several different technologies of Wave Energy Converters (WEC) have been developed such as Oscillating Water Column (OWC) devices. OWCs are characterized by a chamber in which water oscillates inside and out in a movement similar to that of a piston. This movement directs air to a chimney where a turbine is attached to convert mechanical energy. The analysis conducted was based on the Constructive Design Method, in which a numerical study was carried out to obtain the geometric configuration that maximized the conversion of wave energy into mechanical energy. Three degrees of freedom were used: the ratio of height to length of the hydropneumatic chamber (H1/L), the ratio of the height of the chimney to its diameter (H2/d) and the ratio of the width of the hydropneumatic chamber to the width of the wave tank (W/Z). A Design of Experiments (DoE) technique coupled with Central Composite Design (CCD) allowed the simulation of different combinations of degrees of freedom. This allowed the construction of Response Surfaces and correlations for the efficiency of the system depending on the degrees of freedom (width and height of the chamber), as well as the optimization of the system based on the Response Surfaces.


2011 ◽  
Vol 110-116 ◽  
pp. 1613-1618 ◽  
Author(s):  
S. Kapoor ◽  
P. Bera

A comprehensive numerical study on the natural convection in a hydrodynamically anisotropic as well as isotropic porous enclosure is presented, flow is induced by non uniform sinusoidal heating of the right wall of the enclosure. The principal directions of the permeability tensor has been taken oblique to the gravity vector. The spectral Element method has been adopted to solve numerically the governing differential equations by using the vorticity-stream-function approach. The results are presented in terms of stream function, temperature profile and Nusselt number. The result show that the maximum heat transfer takes place at y = 1.5 when N is odd.. Also, increasing media permeability, by changing K* = 1 to K* = 0.2, increases heat transfer rate at below and above right corner of the enclosure. Furthermore, for the all values of N, profiles of local Nusselt number (Nuy) in isotropic as well as anisotropic media are similar, but for even values of N differ slightly at N = 2.. In particular the present analysis shows that, different periodicity (N) of temperature boundary condition has the significant effect on the flow pattern and consequently on the local heat transfer phenomena.


2014 ◽  
Vol 57 (1) ◽  
Author(s):  
José M. Carcione ◽  
Vivian Grünhut ◽  
Ana Osella

<p>Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law). In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies) between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission) problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect). The analogy is mainly illustrated with geophysical examples of propagation of S (shear), P (compressional), TM (transverse-magnetic) and TE (transverse-electric) waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Liu ◽  
Wen Wan ◽  
Yu Chen ◽  
Jun Wang

Laboratory and numerical study tests were conducted to investigate the dynamic indentation characteristics for various spacings and indentation depths. First, laboratory tests indicate that the increase in the indentation depth first resulted in enlarged groove volumes, caused by fiercer rock breakages between indentations for a fixed spacing; then, the groove volume slightly increased for further increase in indentation depth, whereas the increase in spacing restrained rock breakages and resulted in shrunken grooves. In addition, the numerical study agreed well with laboratory tests that small chips formed at the shallow part of the rock specimen at the early indentation stage, and then, larger chips formed by the crack propagation at deeper parts of the rock specimens when the indentation depth increased. With further increase in indentation depth, crushed powders instead of chips formed. Moreover, the numerical analysis indicates that crack propagation usually leads to the decrease of the indentation force and the dissipation of the stress concentrations at crack tips, whereas the cessation of crack propagation frequently resulted in the increase of the indentation force and the stress concentrations at crack tip with the increase in indentation depth.


Sign in / Sign up

Export Citation Format

Share Document