scholarly journals Evaluation of Pollutant Emissions into the Atmosphere during the Loading of Hydrocarbons in Marine Oil Tankers in the Arctic Region

2020 ◽  
Vol 8 (11) ◽  
pp. 917
Author(s):  
Vadim Fetisov ◽  
Vladimir Pshenin ◽  
Dmitrii Nagornov ◽  
Yuri Lykov ◽  
Amir H. Mohammadi

Emissions of volatile organic compounds into the atmosphere when loading oil or petroleum products into tankers are strong environmental pollutants. Given the increase in oil transport by sea and the development of Arctic routes, humanity faces the task of preserving the Arctic ecosystem. Vapor recovery units can limit the emissions of volatile organic compounds. However, it is necessary to estimate the emissions of oil and petroleum products vapors. This article offers two methods for estimating emissions of volatile organic compounds. In the analytical method, a mathematical model of evaporation dynamics and forecasting tank gas space pressure of the tanker is proposed. The model makes it possible to estimate the throughput capacity of existing gas phase discharge pipeline systems and is also suitable for designing new oil vapor recovery units. Creating an experimental laboratory stand is proposed in the experimental method, and its possible technological scheme is developed.

2021 ◽  
Vol 20 (7) ◽  
pp. 1119-1136
Author(s):  
Seyed Mohsen Peyghambarzadeh ◽  
Mohammad Reza Raazi Tabari ◽  
Sima Sabzalipour ◽  
Reza Jalilzadeh

2011 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
P. A. Ariya ◽  
F. Domine ◽  
G. Kos ◽  
M. Amyot ◽  
V. Côté ◽  
...  

Environmental context Recent research has been directed towards the exchange of microorganisms and chemical compounds between snow and air. We investigate how microorganisms and chemical species in snow from the Arctic and temperate regions are transferred to the atmosphere and altered by the sun's energy. Results suggest that snow photo-biochemical reactions, in addition to physical‐chemical reactions, should be considered in describing organic matter in air–snow exchanges, and in investigations of climate change. AbstractField and laboratory studies of organic compounds in snow (12 species; concentrations ≤17 µg L–1) were conducted and microorganisms in snow and aerosols at urban and Arctic sites were investigated (snow: total bacteria count ≤40000 colony forming units per millilitre (CFU mL–1), fungi ≤400 CFU mL–1; air: bacteria ≤2.2 × 107 CFU m–3, fungi ≤84 CFU m–3). Bio-organic material is transferred between snow and air and influence on snow-air exchange processes is demonstrated. Volatile organic compounds in snow are released into the air upon melting. In vitro photochemistry indicated an increase of ≤60 µg L–1 for 1,3- and 1,4-dimethylbenzenes. Bacillus cereus was identified and observed in snow and air with ice-nucleating being P. syringae absent. As a result snow photobiochemical reactions should be considered in describing organic matter air–snow exchanges, and the investigation of climate change.


2021 ◽  
Vol 21 (17) ◽  
pp. 13609-13630
Author(s):  
Beth S. Nelson ◽  
Gareth J. Stewart ◽  
Will S. Drysdale ◽  
Mike J. Newland ◽  
Adam R. Vaughan ◽  
...  

Abstract. The Indian megacity of Delhi suffers from some of the poorest air quality in the world. While ambient NO2 and particulate matter (PM) concentrations have received considerable attention in the city, high ground-level ozone (O3) concentrations are an often overlooked component of pollution. O3 can lead to significant ecosystem damage and agricultural crop losses, and adversely affect human health. During October 2018, concentrations of speciated non-methane hydrocarbon volatile organic compounds (C2–C13), oxygenated volatile organic compounds (o-VOCs), NO, NO2, HONO, CO, SO2, O3, and photolysis rates, were continuously measured at an urban site in Old Delhi. These observations were used to constrain a detailed chemical box model utilising the Master Chemical Mechanism v3.3.1. VOCs and NOx (NO + NO2) were varied in the model to test their impact on local O3 production rates, P(O3), which revealed a VOC-limited chemical regime. When only NOx concentrations were reduced, a significant increase in P(O3) was observed; thus, VOC co-reduction approaches must also be considered in pollution abatement strategies. Of the VOCs examined in this work, mean morning P(O3) rates were most sensitive to monoaromatic compounds, followed by monoterpenes and alkenes, where halving their concentrations in the model led to a 15.6 %, 13.1 %, and 12.9 % reduction in P(O3), respectively. P(O3) was not sensitive to direct changes in aerosol surface area but was very sensitive to changes in photolysis rates, which may be influenced by future changes in PM concentrations. VOC and NOx concentrations were divided into emission source sectors, as described by the Emissions Database for Global Atmospheric Research (EDGAR) v5.0 Global Air Pollutant Emissions and EDGAR v4.3.2_VOC_spec inventories, allowing for the impact of individual emission sources on P(O3) to be investigated. Reducing road transport emissions only, a common strategy in air pollution abatement strategies worldwide, was found to increase P(O3), even when the source was removed in its entirety. Effective reduction in P(O3) was achieved by reducing road transport along with emissions from combustion for manufacturing and process emissions. Modelled P(O3) reduced by ∼ 20 ppb h−1 when these combined sources were halved. This study highlights the importance of reducing VOCs in parallel with NOx and PM in future pollution abatement strategies in Delhi.


2011 ◽  
Vol 11 (5) ◽  
pp. 14127-14182 ◽  
Author(s):  
R. S. Hornbrook ◽  
D. R. Blake ◽  
G. S. Diskin ◽  
H. E. Fuelberg ◽  
S. Meinardi ◽  
...  

Abstract. Mixing ratios of a large number of volatile organic compounds (VOCs) were observed by the Trace Organic Gas Analyzer (TOGA) on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. Many of these VOCs were observed concurrently by one or both of two other VOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS) and whole air canister sampling (WAS). A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured VOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB) plumes with origins in Asia, California and Central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, identified BB plumes were grouped by flight, source region and, in some cases, time of day, generating 40 individual plume groups, each consisting of one or more BB plume interceptions. Normalized excess mixing ratios (EMRs) to CO were determined for each of the 40 plume groups for up to 19 different VOCs or VOC groups, many of which show significant variability, even within relatively fresh plumes. This variability demonstrates the importance of assessing BB plumes both regionally and temporally, as emissions can vary from region to region, and even within a fire over time. Comparisons with literature confirm that variability of EMRs to CO over an order of magnitude for many VOCs is consistent with previous observations. However, this variability is often diluted in the literature when individual observations are averaged to generate an overall regional EMR from a particular study. Previous studies give the impression that emission ratios are generally consistent within a given region, and this is not necessarily the case, as our results show. For some VOCs, earlier assumptions may lead to significant under-prediction of emissions in fire emissions inventories. Notably, though variable between plumes, observed EMRs of individual light alkanes are highly correlated within BB emissions. Using the NCAR master mechanism chemical box model initialized with concentrations based on two observed scenarios, i.e., fresh Canadian BB and fresh Californian BB, both plumes are expected to experience primarily decreases in oxygenated VOCs during the first 2.5 days, such that any production in the plumes of these compounds is less than the chemical loss. Comparisons of the modeled EMRs to the observed EMRs from BB plumes estimated to be three days in age or less indicate overall good agreement and, for most compounds, no significant difference between BB plumes in these two regions.


2021 ◽  
Vol 11 (19) ◽  
pp. 9084
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The article presents the results of studies on the influence of the thermal state of vehicle combustion engines on pollutant emissions. This influence was analyzed based on data from Poland’s inventory of pollutant emissions for the years 1990–2017. The results show that during engine warm-up, carbon monoxide emission constitutes the largest share (up to 50%) in the national annual total emission. Volatile organic compounds are next in the ranking, whereas the share of nitrogen oxides is the lowest (less than 5%). Under the model traffic conditions, close to those in Poland’s cities in winter, simulation tests regarding additional pollutant emissions from passenger cars during engine warm-up were also carried out. As a result of the cold-start emissive behavior of internal combustion engines, emissions of carbon monoxide and volatile organic compounds showed a considerably greater impact on national pollutant emission, as compared to carbon dioxide, nitrogen oxides and particulate matter. This is particularly evident for the results of the inventory of pollutant emissions from road transport.


2021 ◽  
Author(s):  
Beth S. Nelson ◽  
Gareth J. Stewart ◽  
Will S. Drysdale ◽  
Mike J. Newland ◽  
Adam R. Vaughan ◽  
...  

Abstract. The Indian megacity of Delhi suffers from some of the poorest air quality in the world. While ambient NO2 and particulate matter (PM) concentrations have received considerable attention in the city, high ground level ozone (O3) concentrations are an often overlooked component of pollution. O3 can lead to significant ecosystem damage, agricultural crop losses, and adversely affect human health. During October 2018, concentrations of speciated non-methane hydrocarbons volatile organic compounds (C2 – C13), oxygenated volatile organic compounds (o-VOCs), NO, NO2, HONO, CO, SO2, O3, and photolysis rates, were continuously measured at an urban site in Old Delhi. These observations were used to constrain a detailed chemical box model utilising the Master Chemical Mechanism v3.3.1. VOCs and NOx (NO + NO2) were varied in the model to test their impact on local O3 production rates, P(O3), which revealed a VOC-limited chemical regime. When only NOx concentrations were reduced, a significant increase in P(O3) was observed, thus VOC co-reduction approaches must also be considered in pollution abatement strategies. Of the VOCs examined in this work, mean morning P(O3) rates were most sensitive to monoaromatic compounds, followed by monoterpenes and alkenes, where halving their concentrations in the model led to a 15.6 %, 13.1 % and 12.9 % reduction in P(O3), respectively. P(O3) was not sensitive to direct changes in aerosol surface area but was very sensitive to changes in photolysis rates, which may be influenced by future changes in PM concentrations. VOC and NOx concentrations were divided into emission source sectors, as described by the EDGAR v5.0 Global Air Pollutant Emissions and EDGAR v4.3.2_VOC_spec inventories, allowing for the impact of individual emission sources on P(O3) to be investigated. Reducing road transport emissions only, a common strategy in air pollution abatement strategies worldwide, was found to increase P(O3), even when the source was removed in its entirety. Effective reduction in P(O3) was achieved by reducing road transport along with emissions from combustion for manufacturing and process emissions. Modelled P(O3) reduced by ~20 ppb h−1 when these combined sources were halved. This study highlights the importance of reducing VOCs in parallel with NOx and PM in future pollution abatement strategies in Delhi.


2017 ◽  
Vol 114 (24) ◽  
pp. 6203-6208 ◽  
Author(s):  
Emma L. Mungall ◽  
Jonathan P. D. Abbatt ◽  
Jeremy J. B. Wentzell ◽  
Alex K. Y. Lee ◽  
Jennie L. Thomas ◽  
...  

Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.


2016 ◽  
Vol 7 ◽  
pp. 1421-1427 ◽  
Author(s):  
Vardan Galstyan ◽  
Elisabetta Comini ◽  
Iskandar Kholmanov ◽  
Andrea Ponzoni ◽  
Veronica Sberveglieri ◽  
...  

A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.


Sign in / Sign up

Export Citation Format

Share Document