scholarly journals Mixed-Fidelity Design Optimization of Hull Form Using CFD and Potential Flow Solvers

2021 ◽  
Vol 9 (11) ◽  
pp. 1234
Author(s):  
Gregory J. Grigoropoulos ◽  
Christos Bakirtzoglou ◽  
George Papadakis ◽  
Dimitrios Ntouras

The present paper proposes a new mixed-fidelity method to optimize the shape of ships using genetic algorithms (GA) and potential flow codes to evaluate the hydrodynamics of variant hull forms, enhanced by a surrogate model based on an Artificial Neural Network (ANN) to account for viscous effects. The performance of the variant hull forms generated by the GA is evaluated for calm water resistance using potential flow methods which are quite fast when they run on modern computers. However, these methods do not take into account the viscous effects which are dominant in the stern region of the ship. Solvers of the Reynolds-Averaged Navier-Stokes Equations (RANS) should be used in this respect, which, however, are too time-consuming to be used for the evaluation of some hundreds of variants within the GA search. In this study, a RANS solver is used prior to the execution of the GA to train an ANN in modeling the effect of stern design geometrical parameters only. Potential flow results, accounting for the geometrical design parameters of the rest of the hull, are combined with the aforementioned trained meta-model for the final hull form evaluation. This work concentrates on the provision of a more reliable framework for the evaluation of hull form performance in calm water without a significant increase of the computing time.

2011 ◽  
Vol 688 ◽  
pp. 390-421
Author(s):  
J. C. Padrino ◽  
D. D. Joseph

AbstractThe nonlinear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid is analysed by means of viscous potential flow. In this approximation, the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface. The governing equations are solved numerically to track the motion of the interface by coupling a boundary-element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier–Stokes equations (Revuelta, Rodríguez-Rodríguez & Martínez-Bazán J. Fluid Mech., vol. 551, 2006, p. 175), which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers $3\leqslant \mathit{We}\leqslant 6$, predictions from viscous potential flow shows good agreement with the results from the Navier–Stokes equations for the bubble break-up time, whereas for larger $\mathit{We}$, the former underpredicts the results given by the latter. When viscosity is included, larger break-up times are predicted with respect to the inviscid case for the same $\mathit{We}$. For the drop, and considering moderate Reynolds numbers, $\mathit{Re}$, increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. For larger $\mathit{Re}$, it comes as a surprise that break-up times smaller than the inviscid limit are obtained. Unfortunately, results from numerical analyses of the incompressible, unsteady Navier–Stokes equations for the case of a drop have not been presented in the literature, to the best of the authors’ knowledge; hence, comparison with the viscous irrotational analysis is not possible.


Author(s):  
I. Rivera-Arreba ◽  
N. Bruinsma ◽  
E. E. Bachynski ◽  
A. Viré ◽  
B. T. Paulsen ◽  
...  

Floating offshore wind platforms may be subjected to severe sea states, which include both steep and long waves. The hydrodynamic models used in the offshore industry are typically based on potential-flow theory, and/or Morison’s equation. These methods are computationally efficient, and can be applied in global dynamic analysis considering wind loads and mooring system dynamics. However, they may not capture important nonlinearities in extreme situations. The present work compares a fully nonlinear wave tank (NWT), based on the viscous Navier-Stokes equations, and a second-order potential-flow model for such situations. A validation of the NWT is first completed for a moored vertical floating cylinder. The OC5-semisubmersible floating platform is then modelled numerically both in this nonlinear NWT and using a second-order potential-flow based solver. To validate both models, they are subjected to non-steep waves and the response in heave and pitch is compared to experimental data. More extreme conditions are examined with both models. Their comparison shows that if the structure is excited at its heave natural frequency, the dependence of the response in heave on the wave height and the viscous effects cannot be captured by the adjusted potential-flow based model. However, closer to the inertia-dominated region, the two models yield similar responses in pitch and heave.


2004 ◽  
Vol 126 (5) ◽  
pp. 735-742 ◽  
Author(s):  
Kwang-Yong Kim ◽  
Seoung-Jin Seo

In this paper, the response surface method using a three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved-blade centrifugal fan is described. For the numerical analysis, Reynolds-averaged Navier-Stokes equations with the standard k-ε turbulence model are discretized with finite volume approximations. The SIMPLEC algorithm is used as a velocity–pressure correction procedure. In order to reduce the huge computing time due to a large number of blades in forward-curved-blade centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Four design variables, i.e., location of cutoff, radius of cutoff, expansion angle of scroll, and width of impeller, were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and a linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. Effects of the relative size of the inactive zone at the exit of impeller and momentum fluxes of the flow in scroll on efficiency were further discussed. It was found that the optimization process provides a reliable design of this kind of fan with reasonable computing time.


Author(s):  
Pierre Ferrant ◽  
Lionel Gentaz ◽  
Bertrand Alessandrini ◽  
Romain Luquet ◽  
Charles Monroy ◽  
...  

This paper documents recent advances of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach, a method for simulating fully nonlinear wave-body interactions including viscous effects. The methods efficiently combines a fully nonlinear potential flow description of undisturbed wave systems with a modified set of RANS with free surface equations accounting for the interaction with a ship or marine structure. Arbitrary incident wave systems may be described, including regular, irregular waves, multidirectional waves, focused wave events, etc. The model may be fixed or moving with arbitrary speed and 6 degrees of freedom motion. The extension of the SWENSE method to 6 DOF simulations in irregular waves as well as to manoeuvring simulations in waves are discussed in this paper. Different illlustative simulations are presented and discussed. Results of the present approach compare favorably with available reference results.


2019 ◽  
Vol 16 (32) ◽  
pp. 345-361
Author(s):  
B. A. UNASPEKOV ◽  
Z. O. ZHUMADILOVA ◽  
S. S. AUELBEKOV ◽  
A. S. TAUBALDIEVA ◽  
G. B. ALDABERGENOVA

A study was made of the nature of the movement of air mass in the space between the device that warms the room and the confining outer wall of the room. The hydrodynamic motion of the air mass was simulated on the basis of the two-dimensional in space Navier-Stokes equations and the convective heat conduction equation to find out a detailed picture of the physical processes that occur. Also for some particular cases, analytical solutions were obtained for the conjugate problem, where the movement of air is caused by its thermal expansion and the action of gravity in areas with different densities (Archimedes' forces). The simulation of more complex types of air movement with the formation of vortex flows using numerical methods and the corresponding program codes written in C++. It was found that the movement of air mass in the space between the device and the fence strongly depends not only on the temperature of the device, the wall, and the outside air. It was revealed that hydrodynamics and heat transfer are significantly influenced by two geometrical parameters: the distance between the device and the wall, and the distance from the flooring to the bottom of the device. In particular, a thin layer of the downward flow of cold air along the fence and above the floor is possible. The condition for the occurrence of such a downward flow has been found, it is determined by the ratio of the temperature of the wall, the device, and the average temperature in the room.


2014 ◽  
Author(s):  
P. Bigay ◽  
A. Bardin ◽  
G. Oger ◽  
D. Le Touzé

In order to efficiently address complex problems in hydrodynamics, the advances in the development of a new method are presented here. This method aims at finding a good compromise between computational efficiency, accuracy, and easy handling of complex geometries. The chosen method is an Explicit Cartesian Finite Volume method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with a ghost-cell method for geometry handling and a Level-set method for the treatment of biphase-flows. The explicit nature of the solver is obtained through a weakly-compressible approach chosen to simulate nearly-incompressible flows. The explicit cell-centered resolution allows for an efficient solving of very large simulations together with a straightforward handling of multi-physics. A characteristic flux method for solving the hyperbolic part of the Navier-Stokes equations is used. The treatment of arbitrary geometries is addressed in the hyperbolic and viscous framework. Viscous effects are computed via a finite difference computation of viscous fluxes and turbulent effects are addressed via a Large-Eddy Simulation method (LES). The Level-Set solver used to handle biphase flows is also presented. The solver is validated on 2-D test cases (flow past a cylinder, 2-D dam break) and future improvements are discussed.


2018 ◽  
Vol 65 ◽  
pp. 07001
Author(s):  
Abdul Haslim Abdul Shukor Lim ◽  
Zulhilmi Ismai ◽  
Mohamad Hidayat Jama ◽  
Md. Ridzuan Makhtar

Capabilities of numerical tools to simulate fluid problems significantly depend on its methods to solve for the Navier-Stokes equations. Different dimensional computing tools using the same horizontal meshes were used to simulate flow conditions inside non- and vegetation meandering compound channel. Both tools give good agreement for simulations of depth-averaged streamwise velocity inside the main channel, but its capabilities vary significantly for simulations on floodplains. Lower relative depth recorded a higher percentage of errors than flow with higher relative depth. Vegetation along the main channel increased the flows complexity especially in the area near the vegetation thus reducing the simulation capabilities of the computing tools. Simulations work by TELEMAC-3D significantly better in the areas with highly dimensional and turbulence conditions. TELEMAC-2D is still useful because of its simplicity and lower computing time and resources required.


2019 ◽  
Vol 84 (4) ◽  
pp. 696-711 ◽  
Author(s):  
Qianxi Wang ◽  
WenKe Liu ◽  
David M Leppinen ◽  
A D Walmsley

Abstract This paper is concerned with microbubble dynamics in a viscous compressible liquid near a rigid boundary. The compressible effects are modelled using the weakly compressible theory of Wang & Blake (2010, Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech., 730, 245–272), since the Mach number associated is small. The viscous effects are approximated using the viscous potential flow theory of Joseph & Wang (2004, The dissipation approximation and viscous potential flow. J. Fluid Mech., 505, 365–377), because the flow field is characterized as being an irrotational flow in the bulk volume but with a thin viscous boundary layer at the bubble surface. Consequently, the phenomenon is modelled using the boundary integral method, in which the compressible and viscous effects are incorporated into the model through including corresponding additional terms in the far field condition and the dynamic boundary condition at the bubble surface, respectively. The numerical results are shown in good agreement with the Keller–Miksis equation, experiments and computations based on the Navier–Stokes equations. The bubble oscillation, topological transform, jet development and penetration through the bubble and the energy of the bubble system are simulated and analysed in terms of the compressible and viscous effects.


Author(s):  
Zhang Lisheng ◽  
Jiang Jin ◽  
Xiao Zhihuai ◽  
Li Yanhui

In this paper numerical simulations were conducted to analyze the effects of design parameters and distribution of balancing-hole on the axial-force of a partial emission pump. The studied pump is a single stage pump with a Barske style impeller. Based on the original impeller, we designed 7 pumps with different balancing-hole diameters and the partial emission pump equipped with different impellers were simulated employing the commercial computational fluid dynamics (CFD) software Fluent 12.1 to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed with the purpose of balancing the contradiction of numerical accuracy and the cost of calculation. The results showed that, with increasing of the capacity, the axial force varies little. The diameter of the inner balancing-hole plays a dominant role of reducing axial-force of partial emission pump, the axial-force decreases with increasing of inner balancing-hole diameter on the whole range of operation, the axial-force of impeller without inner balancing-hole is approximately 3 times larger than that of impeller with inner balancing-hole. While the diameter of outer balancing-hole has a reverse effects compared with that of inner balancing-hole. With increasing of outer balancing-hole, the axial force increases accordingly.


Sign in / Sign up

Export Citation Format

Share Document