scholarly journals A Putative D-Arabinono-1,4-lactone Oxidase, MoAlo1, Is Required for Fungal Growth, Conidiogenesis, and Pathogenicity in Magnaporthe oryzae

2022 ◽  
Vol 8 (1) ◽  
pp. 72
Author(s):  
Ming-Hua Wu ◽  
Lu-Yao Huang ◽  
Li-Xiao Sun ◽  
Hui Qian ◽  
Yun-Yun Wei ◽  
...  

Magnaporthe oryzae is the causal agent of rice blast outbreaks. L-ascorbic acid (ASC) is a famous antioxidant found in nature. However, while ASC is rare or absent in fungi, a five-carbon analog, D-erythroascorbic acid (EASC), seems to appear to be a substitute for ASC. Although the antioxidant function of ASC has been widely described, the specific properties and physiological functions of EASC remain poorly understood. In this study, we identified a D-arabinono-1,4-lactone oxidase (ALO) domain-containing protein, MoAlo1, and found that MoAlo1 was localized to mitochondria. Disruption of MoALO1 (ΔMoalo1) exhibited defects in vegetative growth as well as conidiogenesis. The ΔMoalo1 mutant was found to be more sensitive to exogenous H2O2. Additionally, the pathogenicity of conidia in the ΔMoalo1 null mutant was reduced deeply in rice, and defective penetration of appressorium-like structures (ALS) formed by the hyphal tips was also observed in the ΔMoalo1 null mutant. When exogenous EASC was added to the conidial suspension, the defective pathogenicity of the ΔMoalo1 mutant was restored. Collectively, MoAlo1 is essential for growth, conidiogenesis, and pathogenicity in M. oryzae.

2014 ◽  
Vol 67 ◽  
pp. 37-50 ◽  
Author(s):  
Wenyu Ye ◽  
Xiao Chen ◽  
Zhenhui Zhong ◽  
Meilian Chen ◽  
Lei Shi ◽  
...  

2010 ◽  
Vol 91 (12) ◽  
pp. 3085-3094 ◽  
Author(s):  
S. Urayama ◽  
S. Kato ◽  
Y. Suzuki ◽  
N. Aoki ◽  
M. T. Le ◽  
...  

Author(s):  
THILAGAM R ◽  
BALAGURUNATHAN R ◽  
SANGEETHA M ◽  
HEMALATHA N

Objective: The aims of the present study were to screen the actinobacteria with high potential ability to produce secondary metabolites that have inhibitory activity against plant pathogenic fungi, Magnaporthe oryzae. Production of secondary metabolites was analysis by thin-layer chromatography and bioautography assay. Methods: Screening and selection of potential Streptomyces sp. morphological, cultural, physiological, and biochemical characterization of the screened isolate was carried out. Antifungal compound was confirmed by bioautography assay. Results: Bioautography method use in this study was found to be antifungal fraction from the crude extract. Antifungal secondary metabolites can be readily located on the plates by observing clear zones where active compounds inhibit fungal growth. Conclusion: The bioautography assay shows that this isolates can produce antifungal compound. Therefore, this isolate proves to be a promising microbe which can be further studied for its applications a biocontrol agent against rice blast fungi.


Virology ◽  
2014 ◽  
Vol 448 ◽  
pp. 265-273 ◽  
Author(s):  
Syun-ichi Urayama ◽  
Hirofumi Sakoda ◽  
Ryoko Takai ◽  
Yu Katoh ◽  
Tuong Minh Le ◽  
...  

2010 ◽  
Vol 23 (10) ◽  
pp. 1260-1274 ◽  
Author(s):  
Ya Li ◽  
Shen Liang ◽  
Xia Yan ◽  
Hong Wang ◽  
Debao Li ◽  
...  

An insertional mutagenesis screen in the rice blast fungus, Magnaporthe oryzae, identified a novel mutant, A2-12-3, which is defective in infection-related morphogenesis and pathogenicity. Analysis of the mutation confirmed an insertion into MoLDB1, which putatively encodes an 806-amino-acid protein with a predicted LIM binding domain. Targeted gene deletion mutants of MoLDB1 were unable to produce asexual or sexual spores and were significantly impaired in vegetative growth and fungal virulence. The Δmoldb1 mutants also showed reduced expression of genes coding hydrophobic proteins (e.g. MPG1 and MHP1), resulting in an easily wettable phenotype in vegetative culture. Moreover, the expression of four genes encoding LIM proteins predicted from the M. oryzae genome was significantly downregulated by deletion of MoLDB1. Analysis of an M. oryzae strain expressing a MoLbd1-green fluorescent protein gene fusion was consistent with the protein being nuclear localized. When considered together, MoLdb1 appears to be involved in regulation of cell wall proteins, including hydrophobins and LIM proteins, and is essential for conidiation, sexual development, appressorium formation, and pathogenicity in M. oryzae.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Shuzhen Deng ◽  
Wenda Sun ◽  
Lihong Dong ◽  
Guobing Cui ◽  
Yi Zhen Deng

ABSTRACT Magnaporthe oryzae causes the rice blast disease, which is one of the most serious diseases of cultivated rice worldwide. Glycosylation is an important posttranslational modification of secretory and membrane proteins in all eukaryotes, catalyzed by glycosyltransferases (GTs). In this study, we identified and characterized a type 2 glycosyltransferase, MoGt2, in M. oryzae. Targeted gene deletion mutants of MoGT2 (mogt2Δ strains) were nonpathogenic and were impaired in vegetative growth, conidiation, and appressorium formation at hyphal tips. Moreover, MoGT2 plays an important role in stress tolerance and hydrophobin function of M. oryzae. Site-directed mutagenesis analysis showed that conserved glycosyltransferase domains (DxD and QxxRW) are critical for biological functions of MoGt2. MoGT2 deletion led to altered glycoproteins during M. oryzae conidiation. By liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified several candidate proteins as potential substrates of MoGt2, including several heat shock proteins, two coiled-coil domain-containing proteins, aminopeptidase 2, and nuclease domain-containing protein 1. On the other hand, we found that a conidiation-related gene, genes involved in various metabolism pathways, and genes involved in cell wall integrity and/or osmotic response were differentially regulated in the mogt2Δ mutant, which may potentially contribute to its condiation defects. Taken together, our results show that MoGt2 is important for infection-related morphogenesis and pathogenesis in M. oryzae. IMPORTANCE The ascomycete fungus Magnapothe oryzae is the causal agent of rice blast disease, leading to severe loss in cultivated rice production worldwide. In this study, we identified a conserved type 2 glycosyltransferase named MoGt2 in M. oryzae. The mogt2Δ targeted gene deletion mutants exhibited pleiotropic defects in vegetative growth, conidiation, stress response, hyphal appressorium-mediated penetration, and pathogenicity. Furthermore, conserved glycosyltransferase domains are critical for MoGt2 function. The comparative transcriptome analysis revealed potential target genes under MoGt2 regulation in M. oryzae conidiation. Identification of potential glycoproteins modified by MoGt2 provided information on its regulatory mechanism of gene expression and biological functions. Overall, our study represents the first report of type 2 glycosyltransferase function in M. oryzae infection-related morphogenesis and pathogenesis.


2021 ◽  
pp. 103562
Author(s):  
Alice Bisola Eseola ◽  
Lauren S. Ryder ◽  
Míriam Osés-Ruiz ◽  
Kim Findlay ◽  
Xia Yan ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 301
Author(s):  
Vishesh Kumar ◽  
Priyanka Jain ◽  
Sureshkumar Venkadesan ◽  
Suhas Gorakh Karkute ◽  
Jyotika Bhati ◽  
...  

Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.


2011 ◽  
Vol 24 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Shigeru Tanabe ◽  
Naoko Ishii-Minami ◽  
Ken-Ichiro Saitoh ◽  
Yuko Otake ◽  
Hanae Kaku ◽  
...  

The biological role of a secretory catalase of the rice blast fungus Magnaporthe oryzae was studied. The internal amino acid sequences of the partially purified catalase in the culture filtrate enabled us to identify its encoding gene as a catalase-peroxidase gene, CPXB, among four putative genes for catalase or catalase-peroxidase in M. oryzae. Knockout of the gene drastically reduced the level of catalase activity in the culture filtrate and supernatant of conidial suspension (SCS), and increased the sensitivity to exogenously added H2O2 compared with control strains, suggesting that CPXB is the major gene encoding the secretory catalase and confers resistance to H2O2 in hyphae. In the mutant, the rate of appressoria that induced accumulation of H2O2 in epidermal cells of the leaf sheath increased and infection at early stages was delayed; however, the formation of lesions in the leaf blade was not affected compared with the control strain. These phenotypes were complimented by reintroducing the putative coding regions of CPXB driven by a constitutive promoter. These results suggest that CPXB plays a role in fungal defense against H2O2 accumulated in epidermal cells of rice at the early stage of infection but not in pathogenicity of M. oryzae.


Sign in / Sign up

Export Citation Format

Share Document