scholarly journals Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae

2022 ◽  
Vol 8 (1) ◽  
pp. 84
Author(s):  
Marilia M. Knychala ◽  
Angela A. dos Santos ◽  
Leonardo G. Kretzer ◽  
Fernanda Gelsleichter ◽  
Maria José Leandro ◽  
...  

In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover.

Author(s):  
Marilia M. Knychala ◽  
Angela A. dos Santos ◽  
Leonardo G. Kretzer ◽  
Fernanda Gelsleichter ◽  
Maria José Leandro ◽  
...  

: In our previous work we had developed an hxt-null Saccharomyces cerevisiae strain displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities that proved to be useful as a chassis strain to study new xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Spathaspora passalidarum and Spathaspora arborariae have in their genomes genes with high sequence similarity (78-80%) to SsXUT1. To characterize these putative transporter genes (SpXUT1 and SaXUT1, respectively) they were expressed in the same chassis strain as SsXUT1. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested, although the strains expressing the SsXUT1 and SpXUT1 permeases, after growth on maltose, showed the presence of 14C-glucose and 14C-xylose transport activity. An important feature of these permeases is that SsXUT1 lacks lysine residues in its N-terminal domain with high-confidence ubiquitinylation potential, and has only one at the C-terminal domain, while the SpXUT1 transporter had several of such residues at its C-terminal domain. When the SpXUT1 gene was cloned in a truncated version lacking such lysine residues, the permease allowed grow on glucose or xylose, and even promoted xylose fermentation by the hxt-null strain. In another approach, we deleted two arrestins known to be involved in sugar transporter ubiquitinylation and endocytosis (ROD1 and ROG3), but only the rog3Δ strain allowed modest growth on these sugars. Taken together, these results suggest that to allow efficient sugar transporter expression in S. cerevisiae the lysines involved in transporter endocytosis should be removed from the sequence of the permease.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2750-2756 ◽  
Author(s):  
Toshio Yamaguchi ◽  
Fuminori Tsutsumi ◽  
Péter Putnoky ◽  
Masahiro Fukuhara ◽  
Tatsunosuke Nakamura

The pha1 gene cluster (pha1A′-G) of Sinorhizobium meliloti has previously been characterized as a necessary component for proper invasion into plant root tissue. It has been suggested to encode a multi-subunit K+/H+ antiporter, since mutations in the pha1 region rendered S. meliloti cells sensitive to K+ and alkali, and because there is high amino acid sequence similarity to previously characterized multi-subunit cation/H+ antiporters (Mrp antiporters). However, the detailed transport properties of the Pha1 system are yet to be determined. Interestingly, most of the Mrp antiporters are highly selective for Na+, unlike the Pha1 system. Here, we report the functional expression of the Pha1 system in Escherichia coli and the measurement of cation/H+ antiport activity. We showed that the Pha1 system is indeed a K+/H+ antiporter with a pH optimum under mildly alkaline conditions. Moreover, we found that the Pha1 system can transport Na+; this was unexpected based on previous phenotypic analyses of pha1 mutants. Furthermore, we demonstrated that the cation selectivity of the Pha1 system was altered when the pH was lowered from the optimum. The downregulation of Na+/H+ and K+/H+ antiport activities upon acidic shift appeared to occur via different processes, which might indicate the presence of distinct mechanisms for the regulation of the K+/H+ and Na+/H+ antiport activities of the Pha1 system.


2000 ◽  
Vol 349 (3) ◽  
pp. 821-828 ◽  
Author(s):  
Won-Jae LEE ◽  
Sun-Hong KIM ◽  
Yong-Sik KIM ◽  
Sung-Jun HAN ◽  
Ki-Sook PARK ◽  
...  

The Drosophila extracellular signal-regulated kinase (DERK) mitogen-activated protein kinase (MAPK) is involved in the regulation of multiple differentiation and developmental processes. Tight control of MAPK activity is critical for normal cell behaviour. We identified a novel Drosophila MAPK phosphatase (DMKP) cDNA from the expressed-sequence-tag database and characterized it. Analysis of the nucleotide sequence revealed an open reading frame encoding the 203-amino acid protein, with a calculated molecular mass of 23kDa, which has a high amino acid sequence similarity with ‘VH1-like’dual-specific phosphatases at the broad region near the catalytic sites. The expression of DMKP mRNA occurs from the late larval stages to adulthood in Drosophila development. The recombinant DMKP protein produced in yeast retained its phosphatase activity. When expressed in Schneider cells, DMKP dose-dependently inhibited DERK and Drosophila c-Jun N-terminal kinase activities with high selectivity towards DERK. However, DMKP did not have any affect on Drosophila p38 activity. When DMKP was expressed in yeast, it down-regulated the fus1-lacZ trans-reporter gene of the pheromone MAPK pathway without any significant effect on the high-osmolarity-glycerol-response pathway.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 248
Author(s):  
Veronika Mlitz ◽  
Marcela Hermann ◽  
Maria Buchberger ◽  
Erwin Tschachler ◽  
Leopold Eckhart

Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth.


2008 ◽  
Vol 20 (9) ◽  
pp. 105
Author(s):  
T. Reddy ◽  
G. M. Gibbs ◽  
D. J. Merriner ◽  
J. B. Kerr ◽  
M. K. O.'Bryan

Mammalian cysteine rich secretory proteins are a family of four proteins exhibiting a high amino acid sequence similarity and belonging to the CAP (Cysteine rich secretory proteins, Antigen-5 proteins and the plant Pathogenesis related-1 proteins) superfamily of proteins. They are designated CRISP 1, 2, 3 and 4. Structurally, mammalian CRISP’s are characterised by 16 cysteine residues involved in intra-molecular di-sulfide bonds and the formation of 2 domains, ie., the CRISP domain (CD) and CAP domain. Whilst studies on mouse CRISP2 suggest that the CD is involved in ion channel regulation, studies on non-mammalian CAP superfamily members suggest that the CAP domain is involved in proteolytic activity.They are predominantly expressed and localised in the male reproductive tract, however, the EST expression databases suggest that mammalian CRISPs are expressed more widely than in the male reproductive tract. The objective of this study was therefore to conclusively define the expression and localisation of each CRISP protein in a mammalian system.A reverse transcription PCR expression profile and immunohistochemical analysis of 16 mouse tissue was conducted to establish the expression and localisation of each of the four CRISPs. These data showed that although the CRISPs have a strong expression and localisation bias to the male reproductive tract, they are widely distributed throughout the body in mice, including the ovary, uterus, and mammary gland. Whilst each CRISP has a clear expression profile, there was a striking localisation of androgen regulated CRISPs (1, 3, 4) in immune tissue including the spleen and thymus. Such a localisation raises the spectre of a role for CRISPs in the normal physiology and disease of several organs.


2013 ◽  
Vol 80 (5) ◽  
pp. 1750-1762 ◽  
Author(s):  
Mei-Ru Si ◽  
Lei Zhang ◽  
Zhi-Fang Yang ◽  
Yi-Xiang Xu ◽  
Ying-Bao Liu ◽  
...  

ABSTRACTNrdH redoxins are small protein disulfide oxidoreductases behaving like thioredoxins but sharing a high amino acid sequence similarity to glutaredoxins. Although NrdH redoxins are supposed to be another candidate in the antioxidant system, their physiological roles in oxidative stress remain unclear. In this study, we confirmed that theCorynebacterium glutamicumNrdH redoxin catalytically reduces the disulfides in the class Ib ribonucleotide reductases (RNR), insulin and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), by exclusively receiving electrons from thioredoxin reductase. Overexpression of NrdH increased the resistance ofC. glutamicumto multiple oxidative stresses by reducing ROS accumulation. Accordingly, elevated expression of thenrdHgene was observed when theC. glutamicumwild-type strain was exposed to oxidative stress conditions. It was discovered that the NrdH-mediated resistance to oxidative stresses was largely dependent on the presence of the thiol peroxidase Prx, as the increased resistance to oxidative stresses mediated by overexpression of NrdH was largely abrogated in theprxmutant. Furthermore, we showed that NrdH facilitated the hydroperoxide reduction activity of Prx by directly targeting and serving as its electron donor. Thus, we present evidence that the NrdH redoxin can protect against the damaging effects of reactive oxygen species (ROS) induced by various exogenous oxidative stresses by acting as a peroxidase cofactor.


2006 ◽  
Vol 188 (15) ◽  
pp. 5541-5550 ◽  
Author(s):  
Tatsuya Fukushima ◽  
Anahita Afkham ◽  
Shin-ichirou Kurosawa ◽  
Taichi Tanabe ◽  
Hiroki Yamamoto ◽  
...  

ABSTRACT A new peptidoglycan hydrolase, Bacillus subtilis YojL (cell wall-lytic enzyme associated with cell separation, renamed CwlS), exhibits high amino acid sequence similarity to LytE (CwlF) and LytF (CwlE), which are associated with cell separation. The N-terminal region of CwlS has four tandem repeat regions (LysM repeats) predicted to be a peptidoglycan-binding module. The C-terminal region exhibits high similarity to the cell wall hydrolase domains of LytE and LytF at their C-terminal ends. The C-terminal region of CwlS produced in Escherichia coli could hydrolyze the linkage of d-γ-glutamyl-meso-diaminopimelic acid in the cell wall of B. subtilis, suggesting that CwlS is a d,l-endopeptidase. β-Galactosidase fusion experiments and Northern hybridization analysis suggested that the cwlS gene is transcribed during the late vegetative and early stationary phases. A cwlS mutant exhibited a cell shape similar to that of the wild type; however, a lytE lytF cwlS triple mutant exhibited aggregated microfiber formation. Moreover, immunofluorescence microscopy showed that FLAG-tagged CwlS was localized at cell separation sites and cell poles during the late vegetative phase. The localization sites are similar to those of LytF and LytE, indicating that CwlS is involved in cell separation with LytF and LytE. These specific localizations may be dependent on the LysM repeats in their N-terminal domains. The roles of CwlS, LytF, and LytE in cell separation are discussed.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6071 ◽  
Author(s):  
Liuxin Xiang ◽  
Chao Liu ◽  
Jingzhi Luo ◽  
Lin He ◽  
Yushan Deng ◽  
...  

The AP2/ERF superfamily of transcription factors is one of the largest transcription factor families in plants and plays an important role in plant development processes and stress responses. In this study, BjABR1, an AP2/ERF superfamily gene, from tuber mustard (Brassica juncea var. tumida Tsen et Lee), sharing high amino acid sequence similarity with the AtABR1 (Arabidopsis thaliana AP2-like abscisic acid repressor 1) gene, were performed functional research, and the ABR1 homologous genes in Brassica species were identified and performed phylogenetic analysis. The promoter sequence of BjABR1 contained many phytohormone- and stress-related cis-elements; ABA (abscisic acid) and abiotic stresses can induce BjABR1 expression in tuber mustard; overexpression of BjABR1 in Arabidopsis can alleviate plant sensitivity to ABA and salt and osmotic stresses, and the alleviation may be due to changes in stress/ABA-induced gene expression. These results indicated that BjABR1 functions in ABA and abiotic stress responses. By BLAST searches against the genome database of five Brassica species (three diploids, B. rapa, B. nigra, and B. oleracea, and two allotetraploid, B. juncea and B. napus) using the protein sequence of AtABR1, 3, 3, 3, 6, and 5 ABR1 homologous genes in B. nigra, B. rapa, B. oleracea, B. juncea, and B. napus were identified, respectively, and they shared high sequence similarity. By sequence analysis, annotation mistakes of the protein-coding regions of two ABR1 homologous genes, GSBRNA2T00134741001 and BjuB007684, were found and corrected. Then, the evolution analysis of these ABR1 homologous genes showed that the ancestor of the three diploid species had three ABR1 homologous genes and each diploid inherited all the three genes from their ancestor; then, allotetraploid B. juncea inherited all the six genes from B. rapa and B. nigra with no gene lost, while allotetraploid B. napus inherited all the three genes from B. oleracea and two genes from B. rapa with one gene lost, indicating that ABR1 homologous genes possessed greater hereditary conservation in Brassica species. The ABR1 homologous genes between B. rapa and B. oleracea shared much higher sequence similarity compared to that of B. nigra in diploid species, indicating that ABR1 homologous genes in B. nigra had experienced more rapid evolution, and B. rapa and B. oleracea may share closer relationship compared to B. nigra. Moreover, the spatial and temporal expression analysis of six ABR1 homologous genes of tuber mustard showed that they possessed different expression models. These results imply that ABR1 homologous genes are important to Brassica plants, and they may possess similar function in ABA and abiotic stress responses but play a role in different tissues and growing stages of plant. This study will provide the foundation to the functional research of ABR1 homologous genes in the Brassica species and help to reveal and understand the evolution mechanisms of Brassica species.


Author(s):  
Radhey S. Gupta ◽  
Bijendra Khadka

Both SARS-CoV-2 (COVID-19) and SARS coronaviruses (CoVs) are members of the subgenus Sarbecovirus. To understand the origin of SARS-CoV-2, protein sequences from sarbecoviruses were analyzed to identify highly-specific molecular markers consisting of conserved inserts or deletions (termed CSIs) in the spike (S) and nucleocapsid (N) proteins that are specific for either particular clusters/lineages of these viruses or are commonly shared by specific lineages. Three novel CSIs in the N-terminal domain of the spike protein S1-subunit (S1-NTD) are uniquely shared by the SARS-CoV-2, BatCoV-RaTG13 and most pangolin CoVs, distinguishing this cluster of viruses (SARS-CoV-2r) from all others. In the same positions, where these CSIs are found, related CSIs are also present in two other sarbecoviruses (viz. CoVZXC21 and CoVZC45 forming CoVZC cluster), which form an out group of the SARS-CoV-2r cluster. These three CSIs are not found in the SARS-CoVs. However, both SARS and SARS-CoV-2r CoVs contain two large CSIs in the C-terminal domain of S1 (S1-CTD), which binds the human ACE-2 receptor, that are absent in the CoVZC cluster of CoVs. These results indicate that while the S1-NTD of the SARS-CoV-2r viruses possesses the sequence characteristics of the CoVZC cluster of CoVs, their S1-CTD resembles the SARS viruses. Thus, the spike protein of SARS-CoV-2r viruses has likely originated from a recombination event between the S1-NTD of the CoVZC viruses and the S1-CTD of SARS viruses. This inference is also supported by the amino acid sequence similarity of the S1-NTD and S1-CTD from SARS-CoV-2 compared to the CoVZC and SARS CoVs. We also present evidence that one of the pangolin-CoV_MP789, whose receptor-binding domain is most similar to the SARS-CoV-2, is also derived by a recent recombination between the S1-NTD of the CoVZC CoVs and the S1-CTD of a SARS-CoV-2 related virus. Several other identified CSIs are specific for others clusters of sarbecoviruses including a clade consisting of bat SARS-CoVs (BM48-31/BGR/2008 and SARS_BtKY72). Structural mappings studies show that the identified CSIs are located within surface-exposed loops and form distinct patches on the surface of the spike protein. These surface loops/patches are predicted to interact with other host components and play important role in the biology/pathology of SARS-CoV-2 virus. Lastly, the CSIs specific for the SARS-CoV-2r clade provide novel means for development of new diagnostic and therapeutic targets for these viruses.


Sign in / Sign up

Export Citation Format

Share Document