scholarly journals Convolutional Neural Networks for Fully Automated Diagnosis of Cardiac Amyloidosis by Cardiac Magnetic Resonance Imaging

2021 ◽  
Vol 11 (12) ◽  
pp. 1268
Author(s):  
Asan Agibetov ◽  
Andreas Kammerlander ◽  
Franz Duca ◽  
Christian Nitsche ◽  
Matthias Koschutnik ◽  
...  

Aims: We tested the hypothesis that artificial intelligence (AI)-powered algorithms applied to cardiac magnetic resonance (CMR) images could be able to detect the potential patterns of cardiac amyloidosis (CA). Readers in CMR centers with a low volume of referrals for the detection of myocardial storage diseases or a low volume of CMRs, in general, may overlook CA. In light of the growing prevalence of the disease and emerging therapeutic options, there is an urgent need to avoid misdiagnoses. Methods and Results: Using CMR data from 502 patients (CA: n = 82), we trained convolutional neural networks (CNNs) to automatically diagnose patients with CA. We compared the diagnostic accuracy of different state-of-the-art deep learning techniques on common CMR imaging protocols in detecting imaging patterns associated with CA. As a result of a 10-fold cross-validated evaluation, the best-performing fine-tuned CNN achieved an average ROC AUC score of 0.96, resulting in a diagnostic accuracy of 94% sensitivity and 90% specificity. Conclusions: Applying AI to CMR to diagnose CA may set a remarkable milestone in an attempt to establish a fully computational diagnostic path for the diagnosis of CA, in order to support the complex diagnostic work-up requiring a profound knowledge of experts from different disciplines.

2020 ◽  
Vol 10 (4) ◽  
pp. 224
Author(s):  
Amin Zadeh Shirazi ◽  
Eric Fornaciari ◽  
Mark D. McDonnell ◽  
Mahdi Yaghoobi ◽  
Yesenia Cevallos ◽  
...  

In recent years, improved deep learning techniques have been applied to biomedical image processing for the classification and segmentation of different tumors based on magnetic resonance imaging (MRI) and histopathological imaging (H&E) clinical information. Deep Convolutional Neural Networks (DCNNs) architectures include tens to hundreds of processing layers that can extract multiple levels of features in image-based data, which would be otherwise very difficult and time-consuming to be recognized and extracted by experts for classification of tumors into different tumor types, as well as segmentation of tumor images. This article summarizes the latest studies of deep learning techniques applied to three different kinds of brain cancer medical images (histology, magnetic resonance, and computed tomography) and highlights current challenges in the field for the broader applicability of DCNN in personalized brain cancer care by focusing on two main applications of DCNNs: classification and segmentation of brain cancer tumors images.


2018 ◽  
Vol 44 ◽  
pp. 48-57 ◽  
Author(s):  
Liset Vázquez Romaguera ◽  
Francisco Perdigón Romero ◽  
Cicero Ferreira Fernandes Costa Filho ◽  
Marly Guimarães Fernandes Costa

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Markus J. Ankenbrand ◽  
Liliia Shainberg ◽  
Michael Hock ◽  
David Lohr ◽  
Laura M. Schreiber

Abstract Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.


Author(s):  
Brendan L. Eck ◽  
Nicole Seiberlich ◽  
Scott D. Flamm ◽  
Jesse I. Hamilton ◽  
Abhilash Suresh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document