scholarly journals Brain Linac-Based Radiation Therapy: “Test Drive” of New Immobilization Solution and Surface Guided Radiation Therapy

2021 ◽  
Vol 11 (12) ◽  
pp. 1351
Author(s):  
Fabiana Gregucci ◽  
Ilaria Bonaparte ◽  
Alessia Surgo ◽  
Morena Caliandro ◽  
Roberta Carbonara ◽  
...  

Aim: To test inter-fraction reproducibility, intrafraction stability, technician aspects, and patient/physician’s comfort of a dedicated immobilization solution for Brain Linac-based radiation therapy (RT). Methods: A pitch-enabled head positioner with an open-face mask were used and, to evaluate inter- and intrafraction variations, 1–3 Cone-Beam Computed Tomography (CBCT) were performed. Surface Guided Radiation Therapy (SGRT) was used to evaluate intrafraction variations at 3 time points: initial (i), final (f), and monitoring (m) (before, end, and during RT). Data regarding technician mask aspect were collected. Results: Between October 2019 and April 2020, 69 patients with brain disease were treated: 45 received stereotactic RT and 24 conventional RT; 556 treatment sessions and 863 CBCT’s were performed. Inter-fraction CBCT mean values were longitudinally 0.9 mm, laterally 0.8 mm, vertically 1.1 mm, roll 0.58°, pitch 0.59°, yaw 0.67°. Intrafraction CBCT mean values were longitudinally 0.3 mm, laterally 0.3 mm, vertically 0.4 mm, roll 0.22°, pitch 0.33°, yaw 0.24°. SGRT intrafraction mean values were: i_, m_, f_ longitudinally 0.09 mm, 0.45 mm, 0.31 mm; i_, m_, f_ laterally 0.07 mm, 0.36 mm, 0.20 mm; i_, m_, f_ vertically 0.06 mm, 0.31 mm, 0.22 mm; i_, m_, f_ roll 0.025°, 0.208°, 0.118°; i_, m_, f_ pitch 0.036°, 0.307°, 0.194°; i_, m_, f_ yaw 0.039°, 0.274°, 0.189°. Conclusions: This immobilization solution is reproducible and stable. Combining CBCT and SGRT data confirm that 1 mm CTV-PTV margin for Linac-based SRT was adequate. Using open-face mask and SGRT, for conventional RT, radiological imaging could be omitted.

2006 ◽  
Vol 33 (6Part1) ◽  
pp. 1573-1582 ◽  
Author(s):  
Mohammad K. Islam ◽  
Thomas G. Purdie ◽  
Bernhard D. Norrlinger ◽  
Hamideh Alasti ◽  
Douglas J. Moseley ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
P. López-Jarana ◽  
C. M. Díaz-Castro ◽  
A. Falcão ◽  
C. Falcão ◽  
J. V. Ríos-Santos ◽  
...  

Abstract Background The objective of this study was to measure two parameters involved in tri-dimensional implant planning: the position of the buccal and palatal bone wall and the palatal thickness. Methods Cone beam computed tomography (CBCT) images (Planmeca ProMax 3D) of 403 teeth (208 upper teeth and 195 lower teeth) were obtained from 49 patients referred to the Dental School of Seville from January to December 2014. The height difference between the palatal and buccal walls was measured on the most coronal point of both walls. The thickness of the palatal wall was measured 2 mm from the most coronal point of the palatal wall. Results The mean values in the maxilla were 1.7 ± 0.9 mm for central and lateral incisors, 2.2 ± 1.7 mm for canines, 1.6 ± 0.9 mm for premolars and 1.9 ± 1.5 mm for molars. In the lower jaw, the mean values were 1.3 ± 0.8 mm for incisors, 1.7 ± 1.2 mm for canines, 2.3 ± 1.3 mm for premolars, and 2.6 ± 1.7 mm for molars. In the upper jaw, more than 55% of maxillary teeth (excluding second premolars and molars) presented mean height differences greater than 1 mm. In the mandible, more than 60% of incisors showed a buccal bone thickness of 1 mm from the apical to lingual aspect. All teeth except the second premolar presented a buccal wall located more than 1 mm more apically than the lingual bone wall. Conclusions The buccal bone wall is located more apically (greater than 1 mm) than the palatal or lingual table in most of the cases assessed. The thickness of the palatal or lingual table is also less than 2 mm in the maxilla and mandible, except in the upper canines and premolars and the lower molars.


2010 ◽  
Vol 49 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Hideomi Yamashita ◽  
Akihiro Haga ◽  
Yayoi Hayakawa ◽  
Kae Okuma ◽  
Kiyoshi Yoda ◽  
...  

2006 ◽  
Vol 45 (7) ◽  
pp. 915-922 ◽  
Author(s):  
Thomas G. Purdie ◽  
Douglas J. Moseley ◽  
Jean-Pierre Bissonnette ◽  
Michael B. Sharpe ◽  
Kevin Franks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document