scholarly journals Microbiome Changes in Humans with Parkinson’s Disease after Photobiomodulation Therapy: A Retrospective Study

2022 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Brian Bicknell ◽  
Ann Liebert ◽  
Craig S. McLachlan ◽  
Hosen Kiat

There is a paucity of information on the effect of photobiomodulation therapy on gut microbiome composition. Parkinson’s disease is a progressive neurological disorder with few management options, although the gut microbiome has been suggested as a potential avenue of treatment. We retrospectively analysed the microbiome from human stool samples from a previously published study, which had demonstrated the efficacy of photobiomodulation to treat Parkinson’s patients’ symptoms. Specifically, we have observed changes in the microbiome of Parkinson’s patients after a 12-week treatment regimen with photobiomodulation to the abdomen, neck, head and nose. Noted were positive changes in the Firmicutes to Bacteroidetes (F:B) ratio, which is often interpreted as a proxy for gut health.

2019 ◽  
Author(s):  
Sebastian Heinzel ◽  
Velma T. E. Aho ◽  
Ulrike Suenkel ◽  
Anna-Katharina von Thaler ◽  
Claudia Schulte ◽  
...  

AbstractObjectivesAlterations of the gut microbiome in Parkinson’s disease (PD) have been repeatedly demonstrated. However, little is known about whether such alterations precede disease onset and how they may be related to risk and prodromal markers of PD. We investigated associations of these features with gut microbiome composition.MethodsEstablished risk and prodromal markers of PD as well as factors related to diet/lifestyle, bowel function and medication were studied in relation to bacterial α-/β-diversity, enterotypes, and taxonomic composition in stool samples of 666 elderly TREND study participants.ResultsAmong risk and prodromal markers, physical inactivity, constipation and age showed associations with α- and β-diversity, and for both measures subthreshold parkinsonism and physical inactivity showed interaction effects. Moreover, male sex, possible REM-sleep behavior disorder (RBD), smoking as well as body-mass-index, antidiabetic and urate-lowering medication were associated with β-diversity. Physical inactivity and constipation severity were increased in individuals with the Firmicutes-enriched enterotype. Subthreshold parkinsonism was least frequently observed in individuals with the Prevotella-enriched enterotype. Differentially abundant taxa were linked to constipation, physical inactivity, possible RBD, and subthreshold parkinsonism. Substantia nigra hyperechogenicity, olfactory loss, depression, orthostatic hypotension, urinary/erectile dysfunction, PD family history and the overall prodromal PD probability showed no significant microbiome associations.InterpretationSeveral risk and prodromal markers of PD are associated with changes in gut microbiome composition. However, the impact of the gut microbiome on PD risk and potential microbiome-dependent subtypes in the prodrome of PD need further investigation based on prospective clinical and (multi)omics data in incident PD cases.


2019 ◽  
Author(s):  
Federico Baldini ◽  
Johannes Hertel ◽  
Estelle Sandt ◽  
Cyrille C. Thinnes ◽  
Lorieza Neuberger-Castillo ◽  
...  

ABSTRACTParkinson’s disease (PD) is a systemic disease clinically defined by the degeneration of dopaminergic neurons in the brain. While alterations in the gut microbiome composition have been reported in PD, their functional consequences remain unclear. Herein, we first analysed the gut microbiome of patients and healthy controls by 16S rRNA gene sequencing of stool samples from the Luxembourg Parkinson’s study (n=147 typical PD cases, n=162 controls). All individuals underwent detailed clinical assessment, including neurological examinations and neuropsychological tests followed by self-reporting questionnaires. Second, we predicted the potential secretion for 129 microbial metabolites through personalised metabolic modelling using the microbiome data and genome-scale metabolic reconstructions of human gut microbes. Our key results include: 1. eight genera and nine species changed significantly in their relative abundances between PD patients and healthy controls. 2. PD-associated microbial patterns statistically depended on sex, age, BMI, and constipation. The relative abundances ofBilophilaandParaprevotellawere significantly associated with the Hoehn and Yahr staging after controlling for the disease duration. In contrast, dopaminergic medication had no detectable effect on the PD microbiome composition. 3. Personalised metabolic modelling of the gut microbiomes revealed PD-associated metabolic patterns in secretion potential of nine microbial metabolites in PD, including increased methionine and cysteinylglycine. The microbial pantothenic acid production potential was linked to the presence of specific non-motor symptoms and attributed to individual bacteria, such asAkkermansia muciniphilaandBilophila wardswarthia. Our results suggest that PD-associated alterations of gut microbiome could translate into functional differences affecting host metabolism and disease phenotype.


2020 ◽  
Vol 7 (1) ◽  
pp. e000448
Author(s):  
Ran Yan ◽  
Mandy Murphy ◽  
Angela Genoni ◽  
Evania Marlow ◽  
Ian C Dunican ◽  
...  

IntroductionA diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) is an effective way to reduce gut symptoms in people with irritable bowel syndrome (IBS). This diet reduces the intake of fermentable fibres, leading to changes of the gut microbiota and insufficient fermentation in the large bowel, resulting in reduced production of short-chain fatty acids (SCFAs), such as butyrate, which has unfavourable implications for gut health, sleep and mental health. This study will examine the effect of Fibre-fix, a supplement containing a mix of dietary fibres, on the human gut microbiome composition, fermentative capacity, sleep, quality of life (QOL) and mental health of people with IBS who consume a low FODMAP diet (LFD).Methods and analysisA randomised, double-blind, placebo-controlled, study design is proposed to examine whether Fibre-fix added to an existing LFD may help modulate gastrointestinal function, improve markers of sleep, mental health and promote QOL in patients with IBS. Participants will provide stool and blood samples, daily bowel symptoms diaries and 3-day diet records. Additionally, they will complete validated questionnaires relating to FODMAP intake, sleep, mental health and QOL before and after a 3-week intervention. Gut health will be assessed via faecal microbiome composition, faecal pH and SCFA levels. Alteration of sleep will be recorded using an actigraphy device worn by all participants over the whole study. Multivariate analysis will be used to examine the gut microbiome and repeated measures Analysis of variance (ANOVA) will be used for dependent variables from questionnaires related to bowel symptoms, stool type, sleep, mental health and QOL to assess the differences between intervention and control groups after adjustment for confounding variables.Ethics and disseminationEthics approval was obtained from the Human Research Ethics Committee of Edith Cowan University (2019-00619-YAN). Results will be disseminated in peer-review journal publications, and conference presentations. Participants will be provided with a summary of findings once the study is completed. If Fibre-fix is shown to result in favourable changes in gut microbial composition, SCFA production, sleep and mental well-being without exacerbating symptoms, this will provide additional dietary management options for those with IBS following an LFD.Trial registration numberACTRN12620000032954.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Marthinus Janse van Vuuren ◽  
Theodore Albertus Nell ◽  
Jonathan Ambrose Carr ◽  
Douglas B. Kell ◽  
Etheresia Pretorius

Neuronal lesions in Parkinson’s disease (PD) are commonly associated with α-synuclein (α-Syn)-induced cell damage that are present both in the central and peripheral nervous systems of patients, with the enteric nervous system also being especially vulnerable. Here, we bring together evidence that the development and presence of PD depends on specific sets of interlinking factors that include neuroinflammation, systemic inflammation, α-Syn-induced cell damage, vascular dysfunction, iron dysregulation, and gut and periodontal dysbiosis. We argue that there is significant evidence that bacterial inflammagens fuel this systemic inflammation, and might be central to the development of PD. We also discuss the processes whereby bacterial inflammagens may be involved in causing nucleation of proteins, including of α-Syn. Lastly, we review evidence that iron chelation, pre-and probiotics, as well as antibiotics and faecal transplant treatment might be valuable treatments in PD. A most important consideration, however, is that these therapeutic options need to be validated and tested in randomized controlled clinical trials. However, targeting underlying mechanisms of PD, including gut dysbiosis and iron toxicity, have potentially opened up possibilities of a wide variety of novel treatments, which may relieve the characteristic motor and nonmotor deficits of PD, and may even slow the progression and/or accompanying gut-related conditions of the disease.


2021 ◽  
Author(s):  
Sebastian Heinzel ◽  
Velma T. E. Aho ◽  
Ulrike Suenkel ◽  
Anna‐Katharina Thaler ◽  
Claudia Schulte ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


Author(s):  
Michal Lubomski ◽  
Xiangnan Xu ◽  
Andrew J. Holmes ◽  
Jean Y. H. Yang ◽  
Carolyn M. Sue ◽  
...  

2007 ◽  
Vol 13 ◽  
pp. S113 ◽  
Author(s):  
W.-C. Kim ◽  
S.-H. Oh ◽  
H.-S. Kim ◽  
O.-J. Kim ◽  
M.-S. Lee

Sign in / Sign up

Export Citation Format

Share Document