scholarly journals Investigating the Reliability of Novel Nasal Anthropometry Using Advanced Three-Dimensional Digital Stereophotogrammetry

2022 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Zhouxiao Li ◽  
Yimin Liang ◽  
Thilo Ludwig Schenck ◽  
Konstantin Frank ◽  
Riccardo Enzo Giunta ◽  
...  

Three-dimensional surface imaging systems (3DSI) provide an effective and applicable approach for the quantification of facial morphology. Several researchers have implemented 3D techniques for nasal anthropometry; however, they only included limited classic nasal facial landmarks and parameters. In our clinical routines, we have identified a considerable number of novel facial landmarks and nasal anthropometric parameters, which could be of great benefit to personalized rhinoplasty. Our aim is to verify their reliability, thus laying the foundation for the comprehensive application of 3DSI in personalized rhinoplasty. We determined 46 facial landmarks and 57 anthropometric parameters. A total of 110 volunteers were recruited, and the intra-assessor, inter-assessor, and intra-method reliability of nasal anthropometry were assessed through 3DSI. Our results displayed the high intra-assessor reliability of MAD (0.012–0.29, 0.003–0.758 mm), REM (0.008–1.958%), TEM (0–0.06), rTEM (0.001–0.155%), and ICC (0.77–0.995); inter-assessor reliability of 0.216–1.476, 0.003–2.013 mm; 0.01–7.552%, 0–0.161, and 0.001–1.481%, 0.732–0.985, respectively; and intra-method reliability of 0.006–0.598°, 0–0.379 mm; 0 0.984%, 0–0.047, and 0–0.078%, 0.996–0.998, respectively. This study provides conclusive evidence for the high reliability of novel facial landmarks and anthropometric parameters for comprehensive nasal measurements using the 3DSI system. Considering this, the proposed landmarks and parameters could be widely used for digital planning and evaluation in personalized rhinoplasty, otorhinolaryngology, and oral and maxillofacial surgery.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2523
Author(s):  
Yasmin Ghantous ◽  
Aysar Nashef ◽  
Aladdin Mohanna ◽  
Imad Abu-El-naaj

Defects in the oral and maxillofacial (OMF) complex may lead to functional and esthetic impairment, aspiration, speech difficulty, and reduced quality of life. Reconstruction of such defects is considered one of the most challenging procedures in head and neck surgery. Transfer of different auto-grafts is still considered as the “gold standard” of regenerative and reconstructive procedures for OMF defects. However, harvesting of these grafts can lead to many complications including donor-site morbidity, extending of surgical time, incomplete healing of the donor site and others. Three-dimensional (3D) printing technology is an innovative technique that allows the fabrication of personalized implants and scaffolds that fit the precise anatomy of an individual’s defect and, therefore, has attracted significant attention during the last few decades, especially among head and neck surgeons. Here we discuss the most relevant applications of the 3D printing technology in the oral and maxillofacial surgery field. We further show different clinical examples of patients who were treated at our institute using the 3D technology and discuss the indications, different technologies, complications, and their clinical outcomes. We demonstrate that 3D technology may provide a powerful tool used for reconstruction of various OMF defects, enabling optimal clinical results in the suitable cases.


2021 ◽  
Vol 7 (2) ◽  
pp. 37-47
Author(s):  
Deepak Grover ◽  
Navneet Kaur ◽  
Gurpreet Kaur

The three-dimensional printing has been used since very long ago in the field of medicine as well as in dentistry. The evolution of 3-dimensional imaging and modelling in dentistry is progressing towards a more efficient and cost-effective workflow using state-of-the-art technology. The practicability of this technique is expanding in several dental fields such as prosthodontics, oral and maxillofacial surgery and prosthesis, and production of surgical guides or physical models in dental implant treatment. The key of success in this technique depends on the usage of various materials such as, metal, resin, plastic etc. which is most commonly used in dentistry. With introduction of this recent advanced technology, it is used in various surgical procedures such as ridge augmentation, sinus lift and guided implant surgery, implant fixtures, preparation of customized scaffold with or without stem cell therapy, education models as well as in drug delivery technology. The 3-dimensional printing technology is becoming more economical technique and able to produce replica of dental models with a high resolution and accuracy.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yueyi Tian ◽  
ChunXu Chen ◽  
Xiaotong Xu ◽  
Jiayin Wang ◽  
Xingyu Hou ◽  
...  

Three-dimensional (3D) printing technologies are advanced manufacturing technologies based on computer-aided design digital models to create personalized 3D objects automatically. They have been widely used in the industry, design, engineering, and manufacturing fields for nearly 30 years. Three-dimensional printing has many advantages in process engineering, with applications in dentistry ranging from the field of prosthodontics, oral and maxillofacial surgery, and oral implantology to orthodontics, endodontics, and periodontology. This review provides a practical and scientific overview of 3D printing technologies. First, it introduces current 3D printing technologies, including powder bed fusion, photopolymerization molding, and fused deposition modeling. Additionally, it introduces various factors affecting 3D printing metrics, such as mechanical properties and accuracy. The final section presents a summary of the clinical applications of 3D printing in dentistry, including manufacturing working models and main applications in the fields of prosthodontics, oral and maxillofacial surgery, and oral implantology. The 3D printing technologies have the advantages of high material utilization and the ability to manufacture a single complex geometry; nevertheless, they have the disadvantages of high cost and time-consuming postprocessing. The development of new materials and technologies will be the future trend of 3D printing in dentistry, and there is no denying that 3D printing will have a bright future.


Sign in / Sign up

Export Citation Format

Share Document