scholarly journals The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1028
Author(s):  
Karolina Golicz ◽  
Gohar Ghazaryan ◽  
Wiebke Niether ◽  
Ariani C. Wartenberg ◽  
Lutz Breuer ◽  
...  

The intensification of food production systems has resulted in landscape simplification, with trees and hedges disappearing from agricultural land, principally in industrialized countries. However, more recently, the potential of agroforestry systems and small woody landscape features (SWFs), e.g., hedgerows, woodlots, and scattered groups of trees, to sequester carbon was highlighted as one of the strategies to combat global climate change. Our study was aimed to assess the extent of SWFs embedded within agricultural landscapes in Germany, estimate their carbon stocks, and investigate the potential for increasing agroforestry cover to offset agricultural greenhouse gas (GHG) emissions. We analyzed open-source geospatial datasets and identified over 900,000 hectares of SWFs on agricultural land, equivalent to 4.6% of the total farmland. The carbon storage of SWFs was estimated at 111 ± 52 SD teragrams of carbon (Tg C), which was previously unaccounted for in GHG inventories and could play a role in mitigating the emissions. Furthermore, we found cropland to have the lowest SWF density and thus the highest potential to benefit from the implementation of agroforestry, which could sequester between 0.2 and 2 Tg of carbon per year. Our study highlights that country-specific data are urgently needed to refine C stock estimates, improve GHG inventories and inform the large-scale implementation of agroforestry in Germany.

2019 ◽  
pp. 233
Author(s):  
Dian Kartika Santoso ◽  
Antariksa Antariksa ◽  
Sri Utami

A review of cultivation changes in agricultural landscapes in the enclave village of Bromo TenggerSemeru National Park, Ngadas, Malang Regency Ngadas village is one example of an agricultural villagelocated in the mountains. Ngadas village is located in the enclave of Bromo Tengger Semeru National Park(TNBTS) in the Malang Regency, East Java. The dependence of the community on agricultural land makesNgadas have a strong agrarian image. Ngadas people do more activities in the fields than in the house. Asbasic landscape units in the form of mountains, they have a vulnerability if not used wisely. The problem ofvulnerability to erosion in the agricultural landscape, makes Ngadas Village interesting to study. Primarily,regarding the relationship of landscapes and land conservation efforts that must be made to a complexagricultural landscape. Therefore, there is a need for research that focuses on efforts to conserve land, especially in an agricultural landscape. Research is conducted through qualitative methods with spatial andqualitative descriptive comparative analysis. The results of the study show that changes in farming methodshave several disadvantages that can cause land degradation and reduced productivity in each period, includingthe shifting cultivation system to reduce nutrients, upper slopes planted with tubers and monoculture agriculture.Therefore, it is necessary to have the right recommendations, namely planting upper slopes with hard woodplants, planting with polyculture systems, and agroforestry systems applied on the upper slopes.


2021 ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

Abstract The land sector needs to increase biomass production to meet multiple demands while reducing negative land use impacts and transitioning from being a source to being a sink of carbon. The new Common Agricultural Policy of the EU (CAP) steers towards a more needs-based, targeted approach to addressing multiple environmental and climatic objectives, in coherence with other EU policies. In relation to this, new schemes are developed to offer farmers direct payments to adapt practices beneficial for climate, water, soil, air and biodiversity. Multifunctional biomass production systems have potential to reduce environmental impacts from agriculture while maintaining or increasing biomass production for the bioeconomy across Europe. Here, we present the first attempt to model the deployment of two such systems, riparian buffers and windbreaks, across >81.000 landscapes in Europe (EU27 + UK), aiming to quantify the resulting ecosystem services and environmental benefits, considering three deployment scenarios with different incentives for implementation. We found that these multifunctional biomass production systems can reduce N emissions to water and soil loss by wind erosion, respectively, down to a “low” impact level all over Europe, while simultaneously providing substantial environmental co-benefits, using less than 1% of the area under annual crops in the EU. The GHG emissions savings of utilizing the biomass produced in these systems for replacing fossil alternatives, combined with the increases in soil organic carbon, correspond to 1-1,4% of total GHG emissions in EU28. The introduction of “eco-schemes” in the new CAP may resolve some of the main barriers to implementation of large-scale multifunctional biomass production systems. Increasing the knowledge of these opportunities among all EU member states, before designing and introducing country-specific Eco-scheme options in the new CAP, is critical.


2021 ◽  
pp. 122-147
Author(s):  
Mark Maslin

‘Solutions’ outlines the three types of solutions to climate change. The first is adaptation, which is providing protection for the population from the impacts of climate change. Both physical and social adaptations are required to protect people’s lives and livelihoods. The second solution is mitigation, which in its simplest terms is reducing our carbon footprint and thus reversing the trend of ever-increasing GHG emissions. This type of solution includes switching to renewable energy and electric vehicles, fossil-fuel subsidy reforms, smart power grids, sustainable agriculture, reforestation and rewilding. The third solution is geoengineering, which involves large-scale extraction of carbon dioxide from the atmosphere or modification of the global climate.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1507
Author(s):  
Tom Volenzo Elijah ◽  
Rachel Makungo ◽  
Georges-Ivo Ekosse

Small-scale farming production systems are integral drivers of global sustainability challenges and the climate crisis as well as a solution space for the transition to climate compatible development. However, mainstreaming agricultural emissions into a climate action agenda through integrative approaches, such as Climate Smart Agriculture (CSA), largely reinforces adaptation–mitigation dualism and pays inadequate attention to institutions’ linkage on the generation of externalities, such as Greenhouse Gas (GHG) emissions. This may undermine the effectiveness of local–global climate risk management initiatives. Literature data and a survey of small-scale farmers’ dairy feeding strategies were used in the simulation of GHG emissions. The effect of price risks on ecoefficiencies or the amount of GHG emissions per unit of produced milk is framed as a proxy for institutional feedbacks on GHG emissions and effect at scale. This case study on small-scale dairy farmers in western Kenya illustrates the effect of local-level and sectoral-level institutional constraints, such as market risks on decision making, on GHG emissions and the effectiveness of climate action. The findings suggest that price risks are significant in incentivising the adoption of CSA technologies. Since institutional interactions influence the choice of individual farmer management actions in adaptation planning, they significantly contribute to GHG spillover at scale. This can be visualised in terms of the nexus between low or non-existent dairy feeding strategies, low herd productivity, and net higher methane emissions per unit of produced milk in a dairy value chain. The use of the Sustainable Food Value Chain (SFVC) analytical lens could mediate the identification of binding constraints, foster organisational and policy coherence, as well as broker the effective mainstreaming of agricultural emissions into local–global climate change risk management initiatives. Market risks thus provide a systematic and holistic lens for assessing alternative carbon transitions, climate financing, adaptation–mitigation dualism, and the related risk of maladaptation, all of which are integral in the planning and implementation of effective climate action initiatives.


2017 ◽  
Vol 13 (4) ◽  
pp. 20160714 ◽  
Author(s):  
Ilsa B. Kantola ◽  
Michael D. Masters ◽  
David J. Beerling ◽  
Stephen P. Long ◽  
Evan H. DeLucia

Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils—applying crushed silicate rock as a soil amendment—is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N 2 O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO 2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO 2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate.


2014 ◽  
pp. 55-60
Author(s):  
János Nagy

The world’s food production needs to be doubled in order to cover the need of the population by 2050 even if it exceeds 9 billion. The output of agriculture is expected to increase by 1.7% every year until 2020 (OECD, FAO 2011) which is a major decrease in comparison with the average 2.6% increase of the previous decade. At the same time, the meat, dairy, sugar and vegetable oil consumption is likely to increase by 2020 to a higher extent than so far. Due to the increasing food prices, the amount of starving people will increase and food consumption will decrease – especially in developing countries – as people will be able to buy less and only cheaper food products. Also, obesity may become a more severe problem and the inequality of the population’s health status could increase. One of the most important elements of adapting to global climate change is food safety; therefore, it is especially important to breed new biological bases and to introduce production systems which contribute to adapting to changed circumstances.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1276
Author(s):  
Xue Yang ◽  
Yuzheng Li ◽  
Chunying Li ◽  
Qianqian Li ◽  
Bin Qiao ◽  
...  

Medicinal-agroforestry systems are one of the multi-functional medicinal plant production systems, gaining attention as a sustainable alternative to traditional monoculture systems. In this study, three planting patterns were established which included: (1) monoculture F. carica (MF); (2) monoculture T. cuspidata (MT); and (3) interplanting F. carica with T. cuspidata (IFT). The differences of growth biomass, photosynthesis, soil nutrients, soil enzyme activities, soil microorganisms, and main secondary metabolites of F. carica and T. cuspidata under the above three models were investigated. Compared with the MF and MT patterns, IFT pattern for 5 months significantly increased the plant growth biomass, photosynthesis, soil organic carbon, total nitrogen, and secondary metabolites content. The activities of acid phosphatase, sucrase, protease, polyphenol oxidase, urease, dehydrogenase, and catalase in soil of IFT were significantly higher than MF and MT patterns. Results showed that IFT pattern is preferred compared to the MF and MT patterns. Our result will help to provide a feasible theoretical basis for the large-scale establishment of F. carica and T. cuspidata mixed forests and obtain high-quality medicine sources for extracting important active ingredients, psoralen and paclitaxel, which are crucial to the long-term sustainable development and production of medicinal plants.


2021 ◽  
Author(s):  
Johannes A. Leins ◽  
Martin Drechsler

In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on severity of climate change in sub regions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m2) scale in 107 sub regions, altogether encompassing a range of different grassland cover, climate change projections and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many sub regions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions, but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle.


2021 ◽  
Author(s):  
Thomas David Alcock ◽  
David E Salt ◽  
Paul Wilson ◽  
Stephen J Ramsden

Intensive cultivation and post-harvest vegetable oil production stages are major sources of greenhouse gas (GHG) emissions. Variation between production systems and reporting disparity have resulted in discordance in previous emissions estimates. To assess systems-wide GHG implications of meeting increasing edible oil demand, we performed a unified re-analysis of life cycle input data from diverse oil palm, soybean, rapeseed, and sunflower production systems, from a saturating search of published literature. The resulting dataset reflects almost 6,000 producers in 38 countries, and is representative of over 74% of global vegetable oil production. Determination of the carbon cost of agricultural land occupation revealed that carbon storage potential drives variation in production GHG emissions, and indicates that expansion of production in low carbon storage potential land, whilst reforesting areas of high carbon storage potential, could reduce net GHG emissions whilst boosting productivity. Nevertheless, there remains considerable scope to improve sustainability within current production systems.


Author(s):  
C. Vinodan ◽  
Anju Lis Kurian

Energy is the prominent navigator of climate change as it contributes to most of the greenhouse gases (GHGs) and the burning of fossil fuels are the foremost sources of GHG emissions. Climate change is a major challenge for developing countries like India that face large scale climate variability and are exposed to enhanced risks from climate change. Few countries in the world are as vulnerable to the effects of climate change as India is with its vast population that is dependent on the growth of its agrarian economy, its expansive coastal areas and the Himalayan region and islands. The vulnerabilities of climate change and energy insecurity are directing a global changeover towards a low carbon and sustainable energy path. In the UNFCC, India has cleared its stand that it would not make any commitments to trim down its GHG emissions as it has one of the least per capita emissions and in the fi rst place the developed world is responsible for the dilemma and the developing world requires the carbon space to spring up. But by being a responsible and progressive member of the international community, India demonstrated the flexibility towards the endeavours to trim down climate change causalities. India is endowed with diverse natural resources such as solar, wind, water and biomass; these are the promising resources to meet up the energy requirements of the coming years. The present paper attempts to analyse the linkages between climate change and energy security. The paper also aims to project India’s response to the global climate regime. The paper argues that the problems of climate change and energy security are the major obstacles for India’s energy policy while they open gargantuan opportunities to shift its people to cleaner energy trajectories and know-how in the long term.  


Sign in / Sign up

Export Citation Format

Share Document