scholarly journals A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1256
Author(s):  
Simone Marzeddu ◽  
Andrea Cappelli ◽  
Andrea Ambrosio ◽  
María Alejandra Décima ◽  
Paolo Viotti ◽  
...  

Life cycle assessment (LCA) is a fundamental tool for evaluating the environmental and energy load of a production cycle. Its application to renewable energy production systems offers the possibility of identifying the environmental benefits of such processes—especially those related to the by-products of production processes (i.e., digestion or biochar). Biochar has received worldwide interest because of its potential uses in bioenergy production, due to its coproducts (bio-oil and syngas), as well as in global warming mitigation, sustainable agriculture, pollutant removal, and other uses. Biochar production and use of soil is a strategy for carbon sequestration that could contribute to the reduction of emissions, providing simultaneous benefits to soil and opportunities for bioenergy generation. However, to confirm all of biochar’s benefits, it is necessary to characterize the environmental and energy loads of the production cycle. In this work, soil carbon sequestration, nitrous oxide emissions, use of fertilizers, and use of water for irrigation have been considered in the biochar’s LCA, where the latter is used as a soil conditioner. Primary data taken from experiments and prior studies, as well as open-source available databases, were combined to evaluate the environmental impacts of energy production from biomass, as well as the biochar life cycle, including pre- and post-conversion processes. From the found results, it can be deduced that the use of gasification production of energy and biochar is an attractive strategy for mitigating the environmental impacts analyzed here—especially climate change, with a net decrease of about −8.3 × 103 kg CO2 eq. Finally, this study highlighted strategic research developments that combine the specific characteristics of biochar and soil that need to be amended.

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Mattias Gaglio ◽  
Elena Tamburini ◽  
Francesco Lucchesi ◽  
Vassilis Aschonitis ◽  
Anna Atti ◽  
...  

The need to reduce the environmental impacts of the food industry is increasing together with the dramatic increment of global food demand. Circulation strategies such as the exploitation of self-produced renewable energy sources can improve ecological performances of industrial processes. However, evidence is needed to demonstrate and characterize such environmental benefits. This study assessed the environmental performances of industrial processing of maize edible oil, whose energy provision is guaranteed by residues biomasses. A gate-to-gate Life Cycle Assessment (LCA) approach was applied for a large-size factory of Northern Italy to describe: (i) the environmental impacts related to industrial processing and (ii) the contribution of residue-based bioenergy to their mitigation, through the comparison with a reference system based on conventional energy. The results showed that oil refinement is the most impacting phase for almost all the considered impact categories. The use of residue-based bioenergy was found to drastically reduce the emissions for all the impact categories. Moreover, Cumulative Energy Demand analysis revealed that the use of biomass residues increased energy efficiency through a reduction of the total energy demand of the industrial process. The study demonstrates that the exploitation of residue-based bioenergy can be a sustainable solution to improve environmental performances of the food industry, while supporting circular economy.


Author(s):  
Daniele Landi ◽  
Leonardo Postacchini ◽  
Paolo Cicconi ◽  
Filippo E. Ciarapica ◽  
Michele Germani

In industrialized countries, packaging waste is one of the major issues to deal with, representing around 35% of the total municipal solid waste yearly generated. Therefore, an analysis and an environmental assessment of packaging systems are necessary. This paper aims at analyzing and comparing the environmental performances of two different packaging for domestic hoods. It shows how, through a packaging redesign, it is possible to obtain a reduction of the environmental impacts. This study has been performed in accordance with the international standards ISO 14040/14044, by using attributional Life Cycle Assessment (LCA) from Cradle to Gate. The functional unit has been defined as the packaging of a single household hood. Primary data have been provided by a household hood manufacturer, while secondary data have been obtained from the Ecoinvent database. LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA) stage. The results have shown the new packaging model being able to cut down the environmental impacts of approximately 30%. These outcomes may be used by household manufacturers to improve performances and design solutions of their different packaging.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


2014 ◽  
Vol 599 ◽  
pp. 324-327 ◽  
Author(s):  
Jia Ping Cui ◽  
Yu Liu ◽  
Zhi Hong Wang ◽  
Li Li Zhao ◽  
Fei Fei Shi ◽  
...  

The environmental impacts of cement production using two pre-drying processes, i.e., coal-fired pre-drying process and pre-drying process by waste heat from kiln tail process were analyzed and compared through life cycle assessment (LCA). The results show that the energy consumption, GWP, AP, POCP, HT and EP of pre-drying process by waste heat from kiln tail are about 1%, 2%, 5.2%, 5% ,3.5% and 3.8% lower than coal-fired process; therefore the application of pre-drying process by waste heat from kiln tail has obvious environmental benefits.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2129
Author(s):  
Fotini Petrakli ◽  
Anastasia Gkika ◽  
Alexandra Bonou ◽  
Panagiotis Karayannis ◽  
Elias P. Koumoulos ◽  
...  

Life cycle assessment is a methodology to assess environmental impacts associated with a product or system/process by accounting resource requirements and emissions over its life cycle. The life cycle consists of four stages: material production, manufacturing, use, and end-of-life. This study highlights the need to conduct life cycle assessment (LCA) early in the new product development process, as a means to assess and evaluate the environmental impacts of (nano)enhanced carbon fibre-reinforced polymer (CFRP) prototypes over their entire life cycle. These prototypes, namely SleekFast sailing boat and handbrake lever, were manufactured by functionalized carbon fibre fabric and modified epoxy resin with multi-walled carbon nanotubes (MWCNTs). The environmental impacts of both have been assessed via LCA with a functional unit of ‘1 product piece’. Climate change has been selected as the key impact indicator for hotspot identification (kg CO2 eq). Significant focus has been given to the end-of-life phase by assessing different recycling scenarios. In addition, the respective life cycle inventories (LCIs) are provided, enabling the identification of resource hot spots and quantifying the environmental benefits of end-of-life options.


Author(s):  
Shabrina Nashya Aswin ◽  
Wiwit Juita Sari ◽  
Nurul Hathiqah ◽  
Rahma Dzulqa Dzulqa ◽  
Idil Saputra ◽  
...  

Limau Manis is an area that is famous for producing rice, known as 'Sokan Limau Manis rice'. The development of sokan rice as a local product of Padang City can encourage increased rice production. The increase in production will affect the quality of the environment as a result of the entire series of sokan rice production activities. To find out the amount of emissions that can be generated from the Sokan Limau Manis rice production process, it is necessary to do an analysis using a Life Cycle Assessment (LCA). The LCA method can help identify and analyze the production cycle, the stages of the process, the flow of materials and materials as well as the energy that occurs during the rice production process in a comprehensive manner. Furthermore, the LCA method is able to provide an overview of the environmental impacts that can be generated from a series of rice production processes in which the implementation uses input raw materials that have the potential to damage the environment such as the use of chemical fertilizers. This research was conducted in Limau Manih Village, Pauh District, Padang City. The data used are primary data obtained from field observations and interviews with related parties. Primary data include the life cycle of rice, input and output of raw materials needed at each stage of the life cycle, as well as the use of tools and machinery at each stage of the life cycle. Secondary data includes the way the calculations are carried out, the value of emissions, and energy conversion. Sokan rice production system includes cultivation activities, rice refining until the final rice product is obtained requires input and energy consumption in the form of seeds, fertilizer, and diesel fuel as fuel. The development of Life Cycle Inventory (LCI) in the LCA analysis helps facilitate the process of data inventory in identifying the flow of raw materials in one production cycle of a product. The results of the analysis show that sokan rice produces emissions of 1.94 kg CO2eq / kg of rice produced with a total energy use value of 11,363.7 MJ / ton of rice. The largest CO2 emissions come from production and transportation activities, while the largest value of non-CO2 emissions comes from the stage of rice cultivation in the form of CH4 emissions. The value of CH4 emissions is influenced by the high use of fertilizers on the land. The improvement of the current system is more focused on reducing the consumption of synthetic fertilizers and increasing the use of organic materials and reuse of production waste to reduce the value of emissions on land and the environment


Author(s):  
Tao Qiang ◽  
Yaxuan Chou ◽  
Honghong Gao

In this study, a life cycle assessment (LCA) was used to investigate the environmental benefits of using styrene-butadiene-styrene (SBS) to modify polylactide (PLA)-based wood plastic composites (WPCs), with a process-based and input–output hybrid model. The results showed that one metric ton of the SBS-modified WPCs required 1.93 × 108 kJ of energy (Sample 2) and 46 m3 of water (Sample 4), and that it could produce 42.3 kg of solid waste (Sample 2) during its cradle-to-gate life cycle phases. The environmental impact load (EIL) and photochemistry oxidation potential (PCOP) accounted for the largest share, while the eutrophication potential (EP) took the smallest one. The total EIL index of Samples 1, 2, 3, and 4 added up to 1.942, 1.960, 1.899, and 1.838, respectively. The SBS-modified WPCs were found to be more environmentally friendly than their unmodified counterparts when they had the same or higher wood fiber (WF) content. SBS was viable to toughen the PLA-based WPCs from an environmental perspective. This cradle-to-gate LCA is likely to help optimize the manufacturing process and mitigate environmental impacts for the natural fiber-reinforced polymer biocomposites.


2013 ◽  
Vol 777 ◽  
pp. 461-466 ◽  
Author(s):  
Kan Fu ◽  
Xiao Yu Ren ◽  
Jin Quan Lin ◽  
Ping Yue

The environmental impacts of the dregs disposal in cement kiln and conventional production were contrastively evaluated by life cycle assessment (LCA) in this study. The results showed that the environmental load ratio of both cement productions followed the order of energy depletion potential (EDP) > depletion potential (ADP) > global warming potential (GWP) > acidification potential (AP) > human toxicity (HT) > photochemical ozone creation potential (POCP). The comprehensive environmental load of disposal dregs was 14.465×10-12/a, which was 3.98% lower than that of the conventional cement production. Moreover, the reduced percentage of the environmental load followed the order of HT> AP> POCP> EDP> ADP> GWP, which indicated that the reduced percentage of human toxicity and acidification reached 10.62% and 10.06% respectively. Thus, considering the environmental benefits, it would be a better method to dispose dregs instead of limestone in cement kiln.


2019 ◽  
Vol 15 (1) ◽  
pp. 51-64
Author(s):  
Arieyanti Dwi Astuti

ENGLISHMinimizing the adverse impact of sugarcane plantation can be carried out through many ways including increasing the efficiency of energy and natural resources consumption as well as improving the management of waste and emissions. Life Cycle Assessment (LCA) was applied to assess the environmental impact of sugarcane plantation without considering sugarcane usage as a raw material in the sugar industry (gate to gate). CML (baseline) was used as Life Cycle Impact Assessment (LCIA) method. This study aimed to: 1) examine the natural resources and energy consumption; 2) analyze and identify potential environmental impacts; and 3) recommend alternative improvements to reduce environmental impacts. It used primary data and secondary data. The results showed that: 1) natural resources were used to produce 16,097 ton of sugarcane or 1 ton of sugar, were land requirement (0.233 ha), water consumption (2,223.117 m3), and energy consumption (19,234.254 MJ); 2) there are five most potential environmental impacts which are analyzed by using openLCA including climate change (134,275.23 kg CO2 eq), eutrophication (120.24 kg PO4 eq), acidification (1.54 kg SO2 eq), photochemical oxidation (0.36 kg ethylene eq), and human toxicity (0.15 kg 1.4-dichlorobenzene eq); 3) alternative recommendation could be conducted by reducing the usage of inorganic fertilizer, and utilizing cane trash (dry leaves, green leaves, and tops) as boiler fuel for production process in sugar factory. INDONESIABudidaya tebu menimbulkan dampak negatif terhadap lingkungan sehingga diperlukan upaya untuk meminimalisir dampak negatif tersebut melalui efisiensi konsumsi energi, konsumsi sumber daya alam (SDA), serta pengelolaan limbah dan emisi. LCA merupakan salah satu metode untuk menganalisis dampak lingkungan dari budidaya tebu tanpa mempertimbangkan penggunaan tebu panen sebagai bahan baku industri gula (gate to gate). Metode yang digunakan untuk LCIA adalah CML (baseline). Penelitian ini  bertujuan untuk: 1) menghitung penggunaan SDA dan energy, 2) menganalisis dan mengidentifikasi potensi dampak lingkungan, dan 3) menyajikan rekomendasi perbaikan untuk menurunkan dampak lingkungan. Data penelitian berupa data primer dan data sekunder. Unit fungsional pada penelitian ini adalah produksi 1 ton gula untuk satu tahun. Hasil penelitian menunjukkan bahwa: 1) konsumsi SDA berupa lahan tebu seluas 0,233 ha, air sebanyak 2.223,117 m3 dan energi sebesar 19.234,254 MJ; 2) potensi dampak lingkungan yang dianalisis menggunakan OpenLCA menghasilkan 5 dampak lingkungan tertinggi, yaitu climate change (134.275,23 kg CO2 eq), eutrophication (120,24 kg PO4 eq), acidification (1,54 kg SO2 eq), photochemical oxidation (0,36 kg ethylene eq), and human toxicity (0,15 kg 1,4-dichlorobenzene eq); 3) alternatif perbaikan yang direkomendasikan berupa penggunaan pupuk anorganik dengan dosis yang tepat dan memanfaatkan limbah pasca pane n (daun kering, serasah) sebagai bahan bakar boiler untuk proses produksi industri gula.


2013 ◽  
Vol 864-867 ◽  
pp. 1132-1138
Author(s):  
C. Hafizan ◽  
Zainura Z. Noor ◽  
F. L Michael

Nowadays, sustainability is one of the main driving forces for worldwide economic growth especially in energy production. Conbustion of fuel such as natural gas for energy production not only produce electricity but also impacts to environment. In order to assess the environmental impacts of the natural gas power plant, study of life cycle assessment (LCA) has been carried out based on the data obtained from natural gas (NG) power plant in Johor, Malaysia. Data validation has been done by comparing the result with other assessment using the data available in the database. This paper presents the results of the LCA. From this study, it was found that there are insignificant differences in terms of the potential environmental impacts between the LCA study conducted using the data from the NG power with the assessment conducted using data from the database.KeywordsLife cycle assessment, sustainability, energy, natural gas


Sign in / Sign up

Export Citation Format

Share Document