scholarly journals COVID-19 and Artificial Intelligence: An Approach to Forecast the Severity of Diagnosis

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1281
Author(s):  
Anca Loredana Udriștoiu ◽  
Alice Elena Ghenea ◽  
Ștefan Udriștoiu ◽  
Manuela Neaga ◽  
Ovidiu Mircea Zlatian ◽  
...  

(1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units, clinicians, and radiologists, so the development of methods to forecast the diagnosis’ severity became a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based multimodal approach to forecast the future diagnosis’ severity of patients with laboratory-confirmed cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate, and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score) was developed to automatically classify the chest X-ray images and integrate them into AI-Score. (3) Results: The AI-Score predicted the COVID-19 diagnosis’ severity on the testing/control dataset (95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study demonstrated that the deep learning methods based on the integration of clinical and biological data with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.

2020 ◽  
Vol 10 (16) ◽  
pp. 5683 ◽  
Author(s):  
Lourdes Duran-Lopez ◽  
Juan Pedro Dominguez-Morales ◽  
Jesús Corral-Jaime ◽  
Saturnino Vicente-Diaz ◽  
Alejandro Linares-Barranco

The COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 has changed the world as we know it. An early diagnosis is crucial in order to prevent new outbreaks and control its rapid spread. Medical imaging techniques, such as X-ray or chest computed tomography, are commonly used for this purpose due to their reliability for COVID-19 diagnosis. Computer-aided diagnosis systems could play an essential role in aiding radiologists in the screening process. In this work, a novel Deep Learning-based system, called COVID-XNet, is presented for COVID-19 diagnosis in chest X-ray images. The proposed system performs a set of preprocessing algorithms to the input images for variability reduction and contrast enhancement, which are then fed to a custom Convolutional Neural Network in order to extract relevant features and perform the classification between COVID-19 and normal cases. The system is trained and validated using a 5-fold cross-validation scheme, achieving an average accuracy of 94.43% and an AUC of 0.988. The output of the system can be visualized using Class Activation Maps, highlighting the main findings for COVID-19 in X-ray images. These promising results indicate that COVID-XNet could be used as a tool to aid radiologists and contribute to the fight against COVID-19.


2021 ◽  
Vol 11 (10) ◽  
pp. 993
Author(s):  
Roberta Fusco ◽  
Roberta Grassi ◽  
Vincenza Granata ◽  
Sergio Venanzio Setola ◽  
Francesca Grassi ◽  
...  

Objective: To report an overview and update on Artificial Intelligence (AI) and COVID-19 using chest Computed Tomography (CT) scan and chest X-ray images (CXR). Machine Learning and Deep Learning Approaches for Diagnosis and Treatment were identified. Methods: Several electronic datasets were analyzed. The search covered the years from January 2019 to June 2021. The inclusion criteria were studied evaluating the use of AI methods in COVID-19 disease reporting performance results in terms of accuracy or precision or area under Receiver Operating Characteristic (ROC) curve (AUC). Results: Twenty-two studies met the inclusion criteria: 13 papers were based on AI in CXR and 10 based on AI in CT. The summarized mean value of the accuracy and precision of CXR in COVID-19 disease were 93.7% ± 10.0% of standard deviation (range 68.4–99.9%) and 95.7% ± 7.1% of standard deviation (range 83.0–100.0%), respectively. The summarized mean value of the accuracy and specificity of CT in COVID-19 disease were 89.1% ± 7.3% of standard deviation (range 78.0–99.9%) and 94.5 ± 6.4% of standard deviation (range 86.0–100.0%), respectively. No statistically significant difference in summarized accuracy mean value between CXR and CT was observed using the Chi square test (p value > 0.05). Conclusions: Summarized accuracy of the selected papers is high but there was an important variability; however, less in CT studies compared to CXR studies. Nonetheless, AI approaches could be used in the identification of disease clusters, monitoring of cases, prediction of the future outbreaks, mortality risk, COVID-19 diagnosis, and disease management.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kai-Chi Chen ◽  
Hong-Ren Yu ◽  
Wei-Shiang Chen ◽  
Wei-Che Lin ◽  
Yi-Chen Lee ◽  
...  

Abstract Acute lower respiratory infection is the leading cause of child death in developing countries. Current strategies to reduce this problem include early detection and appropriate treatment. Better diagnostic and therapeutic strategies are still needed in poor countries. Artificial-intelligence chest X-ray scheme has the potential to become a screening tool for lower respiratory infection in child. Artificial-intelligence chest X-ray schemes for children are rare and limited to a single lung disease. We need a powerful system as a diagnostic tool for most common lung diseases in children. To address this, we present a computer-aided diagnostic scheme for the chest X-ray images of several common pulmonary diseases of children, including bronchiolitis/bronchitis, bronchopneumonia/interstitial pneumonitis, lobar pneumonia, and pneumothorax. The study consists of two main approaches: first, we trained a model based on YOLOv3 architecture for cropping the appropriate location of the lung field automatically. Second, we compared three different methods for multi-classification, included the one-versus-one scheme, the one-versus-all scheme and training a classifier model based on convolutional neural network. Our model demonstrated a good distinguishing ability for these common lung problems in children. Among the three methods, the one-versus-one scheme has the best performance. We could detect whether a chest X-ray image is abnormal with 92.47% accuracy and bronchiolitis/bronchitis, bronchopneumonia, lobar pneumonia, pneumothorax, or normal with 71.94%, 72.19%, 85.42%, 85.71%, and 80.00% accuracy, respectively. In conclusion, we provide a computer-aided diagnostic scheme by deep learning for common pulmonary diseases in children. This scheme is mostly useful as a screening for normal versus most of lower respiratory problems in children. It can also help review the chest X-ray images interpreted by clinicians and may remind possible negligence. This system can be a good diagnostic assistance under limited medical resources.


2021 ◽  
Author(s):  
Soumava Dey ◽  
Gunther Correia Bacellar ◽  
Mallikarjuna Basappa Chandrappa ◽  
Raj Kulkarni

The rise of the coronavirus disease 2019 (COVID-19) pandemic has made it necessary to improve existing medical screening and clinical management of this disease. While COVID-19 patients are known to exhibit a variety of symptoms, the major symptoms include fever, cough, and fatigue. Since these symptoms also appear in pneumonia patients, this creates complications in COVID-19 detection especially during the flu season. Early studies identified abnormalities in chest X-ray images of COVID-19 infected patients that could be beneficial for disease diagnosis. Therefore, chest X-ray image-based disease classification has emerged as an alternative to aid medical diagnosis. However, manual detection of COVID-19 from a set of chest X-ray images comprising both COVID-19 and pneumonia cases is cumbersome and prone to human error. Thus, artificial intelligence techniques powered by deep learning algorithms, which learn from radiography images and predict presence of COVID-19 have potential to enhance current diagnosis process. Towards this purpose, here we implemented a set of deep learning pre-trained models such as ResNet, VGG, Inception and EfficientNet in conjunction with developing a computer vision AI system based on our own convolutional neural network (CNN) model: Deep Learning in Healthcare (DLH)-COVID. All these CNN models cater to image classification exercise. We used publicly available resources of 6,432 images and further strengthened our model by tuning hyperparameters to provide better generalization during the model validation phase. Our final DLH-COVID model yielded the highest accuracy of 96% in detection of COVID-19 from chest X-ray images when compared to images of both pneumonia-affected and healthy individuals. Given the practicality of acquiring chest X-ray images by patients, we also developed a web application (link: https://toad.li/xray) based on our model to directly enable users to upload chest X-ray images and detect the presence of COVID-19 within a few seconds. Taken together, here we introduce a state-of-the-art artificial intelligence-based system for efficient COVID-19 detection and a user-friendly application that has the capacity to become a rapid COVID-19 diagnosis method in the near future.


2020 ◽  
Author(s):  
kishore Medhi ◽  
Md. Jamil ◽  
Iftekhar Hussain

COVID-19 infection has created a panic across the globe in recent times. Early detection of COVID-19 infection can save many lives in the pre-vailing situation. This virus affects the respiratory system of a person and creates white patchy shadows in the lungs. Deep learning is one of the most effective Artificial Intelligence techniques to analyse chest X-ray images for efficient and reliable COVID-19 screening. In this paper, we have proposed a Deep Convolutional Neural Network method for fast and dependable identification of COVID-19 infection cases from the patient chest X-ray images. To validate the performance of the proposed system, chest X-ray images of more than 150 confirmed COVID-19 patients from the Kaggle data repository are used in the experimentation. The results show that the proposed system identifies the cases with an accuracy of 93%.


2021 ◽  
Vol 2 (1) ◽  
pp. 57-66
Author(s):  
Adhitio Satyo Bayangkari Karno Satyo ◽  
Dodi Arif ◽  
Indra Sari Kusuma Wardhana ◽  
Eka Sally Moreta

The availability of medical aids in adequate quantities is very much needed to assist the work of the medical staff in dealing with the very large number of Covid patients. Artificial Intelligence (AI) with the Deep Learning (DL) method, especially the Convolution Neural Network (CNN), is able to diagnose Chest X-ray images generated by the Computer Tomography Scanner (C.T. Scan) against certain diseases (Covid). Inception Resnet Version 2 architecture was used in this study to train a dataset of 4000 images, consisting of 4 classifications namely covid, normal, lung opacity and viral pneumonia with 1,000 images each. The results of the study with 50 epoch training obtained very good values for the accuracy of training and validation of 95.5% and 91.8%, respectively. The test with 4000 image dataset obtained 98% accuracy testing, with the precision of each class being Covid (99%), Lung_Opacity (97%), Normal (99%) and Viral pneumonia (99%).


Author(s):  
Widi Hastomo

The availability of medical aids in adequate quantities is very much needed to assist the work of the medical staff in dealing with the very large number of Covid patients. Artificial Intelligence (AI) with the Deep Learning (DL) method, especially the Convolution Neural Network (CNN), is able to diagnose Chest X-ray images generated by the Computer Tomography Scanner (C.T. Scan) against certain diseases (Covid). Resnet Version-152 architecture was used in this study to train a dataset of 10.300 images, consisting of 4 classifications namely covid, normal, lung opacity with 3,000 images each and viral pneumonia 1,000 images. The results of the study with 50 epoch training obtained very good values for the accuracy of training and validation of 95.5% and 91.8%, respectively. The test with 10.300 image dataset obtained 98% accuracy testing, with the precision of each class being Covid (99%), Lung_Opacity (99%), Normal (98%) and Viral pneumonia (98%). 


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
M. D. Kamrul Hasan ◽  
Sakil Ahmed ◽  
Z. M. Ekram Abdullah ◽  
Mohammad Monirujjaman Khan ◽  
Divya Anand ◽  
...  

The COVID-19 pandemic has wreaked havoc in the daily life of human beings and devastated many economies worldwide, claiming millions of lives so far. Studies on COVID-19 have shown that older adults and people with a history of various medical issues, specifically prior cases of pneumonia, are at a higher risk of developing severe complications from COVID-19. As pneumonia is a common type of infection that spreads in the lungs, doctors usually perform chest X-ray to identify the infected regions of the lungs. In this study, machine learning tools such as LabelBinarizer are used to perform one-hot encoding on the labeled chest X-ray images and transform them into categorical form using Python’s to_categorical tool. Subsequently, various deep learning features such as convolutional neural network (CNN), VGG16, AveragePooling2D, dropout, flatten, dense, and input are used to build a detection model. Adam is used as an optimizer, which can be further applied to predict pneumonia in COVID-19 patients. The model predicted pneumonia with an average accuracy of 91.69%, sensitivity of 95.92%, and specificity of 100%. The model also efficiently reduces training loss and increases accuracy.


Author(s):  
Abdullahi Umar Ibrahim ◽  
Mehmet Ozsoz ◽  
Sertan Serte ◽  
Fadi Al-Turjman ◽  
Polycarp Shizawaliyi Yakoi
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document