scholarly journals Imaging of Intracellular and Plasma Membrane Pools of PI(4,5)P2 and PI4P in Human Platelets

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1331
Author(s):  
Ana Bura ◽  
Antonija Jurak Begonja

Phosphoinositides (PIs) are phosphorylated membrane lipids that have a plethora of roles in the cell, including vesicle trafficking, signaling, and actin reorganization. The most abundant PIs in the cell are phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-4-monophosphate (PI4P). The localization and roles of both PI(4,5)P2 and PI4P are well established, is the broadly accepted methodological approach for their immunocytochemical visualization in different cell compartments in several cell lines. However, not much is known about these PIs in platelets (PLTs), the smallest blood cells that detect vessel wall injury, activate, and stop the bleeding. Therefore, we sought to investigate the localization of PI(4,5)P2 and PI4P in resting and activated PLTs by antibody staining. Here, we show that the intracellular pools of PI(4,5)P2 and PI4P can be detected by the established staining protocol, and these pools can be modulated by inhibitors of OCRL phosphatase and PI4KIIIα kinase. However, although resting PLTs readily stain for the plasma membrane (PM) pools of PI(4,5)P2 and PI4P, just a few activated cells were stained with the established protocol. We show that optimized protocol allows for the visualization of PI(4,5)P2 and PI4P at PM in activated PLTs, which could also be modulated by OCRL and PI4KIIIα inhibitors. We conclude that PI(4,5)P2 and PI4P are more sensitive to lipid extraction by permeabilizing agents in activated than in resting human PLTs, which suggests their different roles during PLT activation.

1984 ◽  
Vol 222 (2) ◽  
pp. 389-394 ◽  
Author(s):  
C Solberg ◽  
C Little ◽  
S Holme ◽  
S E Aakre

Phospholipase C (from Bacillus cereus) was used to study fresh and stored human platelets. Provided that the enzyme was inactivated before lipid extraction, no significant degradation of phospholipid in fresh cells was noted, even when platelets were activated or induced to change shape by ADP, collagen or thrombin. With platelets isolated from concentrates stored for transfusion for 4 days at 22 degrees C, membrane phospholipids were degraded by the enzyme to an extent depending on the pH in the platelet concentrate at day 4 of storage. The extent of phospholipid hydrolysis in platelets correlated well with the extent of release of lactate dehydrogenase during storage, with both being minimal for platelets from concentrates of final pH 6.5-6.9. Under non-lytic conditions, phosphatidylcholine was the phospholipid most degraded (40%), with no significant degradation of phosphatidylserine being detected. Storage does not seem to alter the distribution of phospholipids at the external leaflet of the plasma membrane.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Suresh Velnati ◽  
Sara Centonze ◽  
Federico Girivetto ◽  
Daniela Capello ◽  
Ricardo M. Biondi ◽  
...  

PKCζ and PKCι/λ form the atypical protein kinase C subgroup, characterised by a lack of regulation by calcium and the neutral lipid diacylglycerol. To better understand the regulation of these kinases, we systematically explored their interactions with various purified phospholipids using the lipid overlay assays, followed by kinase activity assays to evaluate the lipid effects on their enzymatic activity. We observed that both PKCζ and PKCι interact with phosphatidic acid and phosphatidylserine. Conversely, PKCι is unique in binding also to phosphatidylinositol-monophosphates (e.g., phosphatidylinositol 3-phosphate, 4-phosphate, and 5-phosphate). Moreover, we observed that phosphatidylinositol 4-phosphate specifically activates PKCι, while both isoforms are responsive to phosphatidic acid and phosphatidylserine. Overall, our results suggest that atypical Protein kinase C (PKC) localisation and activity are regulated by membrane lipids distinct from those involved in conventional PKCs and unveil a specific regulation of PKCι by phosphatidylinositol-monophosphates.


1984 ◽  
Vol 228 (1) ◽  
pp. 299-308 ◽  
Author(s):  
Gustav Graff ◽  
Nabeel Nahas ◽  
Maria Nikolopoulou ◽  
Viswanathan Natarajan ◽  
Harald H.O. Schmid

2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


1967 ◽  
Vol 15 (5) ◽  
pp. 267-272 ◽  
Author(s):  
VICTOR G. VETHAMANY ◽  
SYDNEY S. LAZARUS

Fine structural localization of adenosine triphosphatase activity was studied in human platelets briefly fixed in cold formol calcium and then incubated in lead medium with added dinitrophenol. Under these conditions, the Mg++-dependent dinitrophenol-stimulated adenosine triphosphatase of platelet mitochondria was demonstrated, but neither granules nor plasma membrane showed enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document