scholarly journals Colocalization Analysis of Lipo-Deoxyribozyme Consisting of DNA and Protic Catalysts in a Vesicle-Based Protocellular Membrane Investigated by Confocal Microscopy

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1364
Author(s):  
Yuiko Hirata ◽  
Muneyuki Matsuo ◽  
Kensuke Kurihara ◽  
Kentaro Suzuki ◽  
Shigenori Nonaka ◽  
...  

The linkage between the self-reproduction of compartments and the replication of DNA in a compartment is a crucial requirement for cellular life. In our giant vesicle (GV)-based model protocell, this linkage is achieved through the action of a supramolecular catalyst composed of membrane-intruded DNA and amphiphilic acid catalysts (C@DNA) in a GV membrane. In this study, we examined colocalization analysis for the formation of the supramolecular catalyst using a confocal laser scanning fluorescence microscope with high sensitivity and resolution. Red fluorescence spots emitted from DNA tagged with Texas Red (Texas Red-DNA) were observed in a GV membrane stained with phospholipid tagged with BODIPY (BODIPY-HPC). To our knowledge, this is the first direct observation of DNA embedded in a GV-based model protocellular membrane containing cationic lipids. Colocalization analysis based on a histogram of frequencies of “normalized mean deviation product” revealed that the frequencies of positively correlated [lipophilic catalyst tagged with BODIPY (BODIPY-C) and Texas Red-DNA] were significantly higher than those of [BODIPY-HPC and Texas Red-DNA]. This result demonstrates the spontaneous formation of C@DNA in the GV membrane, which serves as a lipo-deoxyribozyme for producing membrane lipids from its precursor.

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2500 ◽  
Author(s):  
Na Hee Kim ◽  
Junho Lee ◽  
Sungnam Park ◽  
Junyang Jung ◽  
Dokyoung Kim

We report a new Schiff base fluorescent probe which senses ferric ion, Fe(III), with a significant fluorescence enhancement response. The probe showed high sensitivity (0.8 ppb), and fast response time (<10 s) of Fe(III) in aqueous media. In addition, the probe showed the ability to sense Fe(III) in a HeLa cancer cell line, with very low cytotoxicity. As a new bio-imaging probe for Fe(III), it gave bright fluorescent images in confocal laser scanning microscopy (CLSM).


2007 ◽  
Vol 293 (3) ◽  
pp. C1073-C1081 ◽  
Author(s):  
Eckard Picht ◽  
Aleksey V. Zima ◽  
Lothar A. Blatter ◽  
Donald M. Bers

Ca sparks are elementary Ca-release events from intracellular Ca stores that are observed in virtually all types of muscle. Typically, Ca sparks are measured in the line-scan mode with confocal laser-scanning microscopes, yielding two-dimensional images (distance vs. time). The manual analysis of these images is time consuming and prone to errors as well as investigator bias. Therefore, we developed SparkMaster, an automated analysis program that allows rapid and reliable spark analysis. The underlying analysis algorithm is adapted from the threshold-based standard method of spark analysis developed by Cheng et al. ( Biophys J 76: 606–617, 1999) and is implemented here in the freely available image-processing software ImageJ. SparkMaster offers a graphical user interface through which all analysis parameters and output options are selected. The analysis includes general image parameters (number of detected sparks, spark frequency) and individual spark parameters (amplitude, full width at half-maximum amplitude, full duration at half-maximum amplitude, full width, full duration, time to peak, maximum steepness of spark upstroke, time constant of spark decay). We validated the algorithm using images with synthetic sparks embedded into backgrounds with different signal-to-noise ratios to determine an analysis criteria at which a high sensitivity is combined with a low frequency of false-positive detections. Finally, we applied SparkMaster to analyze experimental data of sparks measured in intact and permeabilized ventricular cardiomyocytes, permeabilized mammalian skeletal muscle, and intact smooth muscle cells. We found that SparkMaster provides a reliable, easy to use, and fast way of analyzing Ca sparks in a wide variety of experimental conditions.


1995 ◽  
Vol 43 (7) ◽  
pp. 699-707 ◽  
Author(s):  
H Brismar ◽  
O Trepte ◽  
B Ulfhake

We report on the spectra and fluorescence lifetimes of four commonly used fluorophores: lissamine rhodamine (LRSC); tetramethyl rhodamine isothiocyanate (TRITC); Texas Red; and cyanine 3.18 (Cy-3). Fluorescence lifetime recordings revealed that these spectrally overlapping fluorophores can be individually detected by their lifetimes, indicating that at least four fluorophores can be individually identified in discrete tissue domains by confocal microscopy. A further advantage of lifetime recordings is that fluorophores that emit light within the same wavelength band can be used and chromatic aberrations are therefore circumvented, thereby improving the spatial accuracy in imaging of multiple fluorophores. Low and high pH, respectively, tended to influence fluorophore emission spectra and fluorescence lifetime. IgG conjugation of the fluorophores tended to shift the spectra towards longer wavelengths and to change the fluorescence lifetimes. The IgG-conjugated form of the fluorophores may, when applied to tissue specimens, change the emission spectrum and lifetime. In addition, different tissue embedding procedures may influence fluorescence lifetime. These observations emphasize the importance of spectral and lifetime characterization of fluorescent probes within the chemical context in which they will be used experimentally. Changes in spectra and fluorescence lifetimes may be a useful tool to gain information about the chemical environment of the fluorophores.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
Thomas J. Deerinck ◽  
Maryann E. Martone ◽  
Varda Lev-Ram ◽  
David P. L. Green ◽  
Roger Y. Tsien ◽  
...  

The confocal laser scanning microscope has become a powerful tool in the study of the 3-dimensional distribution of proteins and specific nucleic acid sequences in cells and tissues. This is also proving to be true for a new generation of high contrast intermediate voltage electron microscopes (IVEM). Until recently, the number of labeling techniques that could be employed to allow examination of the same sample with both confocal and IVEM was rather limited. One method that can be used to take full advantage of these two technologies is fluorescence photooxidation. Specimens are labeled by a fluorescent dye and viewed with confocal microscopy followed by fluorescence photooxidation of diaminobenzidine (DAB). In this technique, a fluorescent dye is used to photooxidize DAB into an osmiophilic reaction product that can be subsequently visualized with the electron microscope. The precise reaction mechanism by which the photooxidation occurs is not known but evidence suggests that the radiationless transfer of energy from the excited-state dye molecule undergoing the phenomenon of intersystem crossing leads to the formation of reactive oxygen species such as singlet oxygen. It is this reactive oxygen that is likely crucial in the photooxidation of DAB.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Author(s):  
P.M. Houpt ◽  
A. Draaijer

In confocal microscopy, the object is scanned by the coinciding focal points (confocal) of a point light source and a point detector both focused on a certain plane in the object. Only light coming from the focal point is detected and, even more important, out-of-focus light is rejected.This makes it possible to slice up optically the ‘volume of interest’ in the object by moving it axially while scanning the focused point light source (X-Y) laterally. The successive confocal sections can be stored in a computer and used to reconstruct the object in a 3D image display.The instrument described is able to scan the object laterally with an Ar ion laser (488 nm) at video rates. The image of one confocal section of an object can be displayed within 40 milliseconds (1000 х 1000 pixels). The time to record the total information within the ‘volume of interest’ normally depends on the number of slices needed to cover it, but rarely exceeds a few seconds.


Sign in / Sign up

Export Citation Format

Share Document