scholarly journals Effect of Space Flight Factor on Dormant Stages in Aquatic Organisms: A Review of International Space Station and Terrestrial Experiments

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Victor R. Alekseev ◽  
Jiang-Shiou Hwang ◽  
Margarita A. Levinskikh

This work is a review of the experiments carried out in the Russian segment of the ISS (inside and outside) from 2005 to 2016 on the effect of the space flight factor on the resting stages of organisms. In outer space, ultraviolet, a wide range of high and low temperatures, cosmic radiation, altered gravity, modified electromagnetic field, vacuum, factors of technical origin, ultrasound, microwave radiation, etc. and their combination determine the damaging effect on living organisms. At the same time, biological dormancy, known in a wide range of bacteria, fungi, animals and plants, allows them to maintain the viability of their dormant stages in extreme conditions for a long time, which possibly allows them to survive during space flight. From 2005 to 2016, the resting stages (propagules) of micro- and multicellular organisms were tested on the ISS to assess their ability to survive after prolonged exposure to the conditions of open space and space flight. Among the more than 40 species studied, about a third were dormant stages of aquatic organisms (eggs of cyprinodont fish, daphnia embryos, resting eggs of fairy shrimps, tadpole shrimps, copepods and ostracods, diapausing larvae of dipterans, as well as resting cysts of algae). The experiments were carried out within the framework of four research programs: (1) inside the ISS with a limited set of investigated species (Akvarium program); (2) outside the station in outer space without exposure to ultraviolet radiation (Biorisk program); (3) under modified space conditions simulating the surface of Mars (Expose program); and (4) in an Earth-based laboratory where single-factor experiments were carried out with neutron radiation, modified magnetic field, microwave radiation and ultrasound. Fundamentally new data were obtained on the stability of the resting stages of aquatic organisms exposed to the factors of the space environment, which modified the idea of the possibility of bringing Earth life forms to other planets with spacecraft and astronauts. It also can be used for creating an extraterrestrial artificial ecosystem and searching for extraterrestrial life.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 48
Author(s):  
Carmen G. Sotelo ◽  
María Blanco ◽  
Patricia Ramos ◽  
José A. Vázquez ◽  
Ricardo I. Perez-Martin

Long life expectancy of populations in the developing world together with some cultural and social issues has driven the need to pay special attention to health and physical appearance. Cosmeceuticals are gaining interest in the cosmetic industry as their uses fulfills a double purpose: the requirements of a cosmetic (clean, perfume, protect, change the appearance of the external parts of the body or keeping them in good condition) with a particular bioactivity function. The cosmetics industry, producing both cosmetics and cosmeceuticals, is currently facing numerous challenges to satisfy different attitudes of consumers (vegetarianism, veganism, cultural or religious concerns, health or safety reasons, eco-friendly process, etc.). A currently growing trend in the market is the interest in products of low environmental impact. Marine origin ingredients are increasingly being incorporated into cosmeceutical preparations because they are able to address several consumer requirements and also due to the wide range of bioactivities they present (antioxidant, whitening, anti-aging, etc.). Many companies claim “Marine” as a distinctive marketing signal; however, only a few indicate whether they use sustainable ingredient sources. Sustainable marine ingredients might be obtained using wild marine biomass through a sustainable extractive fishing activity; by adopting valorization strategies including the use of fish discards and fish by-products; and by sustainably farming and culturing marine organisms.


1913 ◽  
Vol 17 (2) ◽  
pp. 117-131
Author(s):  
Hans Zinsser

The experiments recorded in this paper confirm the observations of Friedberger that acutely toxic bodies can be produced from typhoid bacilli by the action of sensitizer and complement and that, when small quantities of bacteria are used, an excess of sensitization either interferes with the formation of the poisons or leads to a cleavage of the bacterial proteid beyond the poisonous intermediate products spoken of as anaphylatoxins. Unlike the experience of other workers with poisons of this nature, however, our experiments have shown that the action of complement upon typhoid bacilli strongly sensitized or not at all sensitized may be carried on, at body temperature, for considerably longer than twelve hours without leading to a destruction of the poisons, and that this is true when the quantities of the bacteria used vary within the wide range of from one to twelve agar slants. It has been found, in fact, that in the case of this microorganism prolonged exposure at the higher temperature of considerable quantities of bacteria constitutes an unfailing method of regularly obtaining powerful poisons. The results obtained by the use of smaller quantities and the less vigorous complement action at low temperatures are far less regular or satisfactory. It would appear from this that complement action of considerable vigor is required to obtain from this bacillus any appreciable yield of anaphylatoxin, and that the poison, once formed, is not as unstable as that found in other microorganisms by Neufeld and Dold and others. In fact, although we have never observed complete lysis in vitro of the typhoid bacilli treated with antibody and complement, the sensitized bacteria exposed to the action of complement for as long as fifteen hours at 37.5° C. showed, in our experiments, much disintegration, and yet powerful poisons were present. Were the influence of lysis or of the too vigorous action of the serum bodies as rapidly poison-destroying in the case of this bacillus as it has been shown to be in the case of some other bacteria, it would be hard to understand how anaphylatoxins could play any part in the toxemia of typhoid fever. This phase of our experiments, however, seems to indicate that the conditions prevailing in the infected body at the height of this disease would furnish ideal criteria for anaphylatoxin production, since, in such cases, vigorously sensitized bacilli, in large numbers, are under the prolonged influence of considerable quantities of complement, conditions exactly comparable to those prevailing in our experiments. Granted that this state of affairs is actually the case, then the subsidence of the disease might depend merely upon limitation of the supply of antigen, as the increasing bactericidal action of the blood constituents come into play, and upon the consequent diminution of the anaphylatoxin. For as the bacteria diminish and the sensitizer increases, a changed proportion between them is established which, finally, as experiment has shown, results in a failure of anaphylatoxin production. For although our experiments have shown that, within a wide latitude of relative proportions of bacteria and antibody, anaphylatoxin can be formed, beyond this range an excess of one or the other element eventually will prevent their formation. It is not, however, the purpose of this paper to discuss the mechanism of the subsidence of the disease since this phase of the work will necessitate further experimental study. In regard to the experiments with kaolin, we were unable to confirm the contention of Keysser and Wassermann, though it is more than likely that toxic bodies could be formed by the action of complement upon any foreign proteid rendered amenable to its action. We are not inclined to attribute too much importance to these negative results, recording them merely as they occurred. However, should it be found subsequently that anaphylatoxins can be formed in this way, it seems unlikely that they are formed from the sensitizer or amboceptor as matrix, since this was not specifically adsorbed out of concentrated serum by the kaolin in our experiments. On the basis of experiments with so called endotoxins, ,we feel that the existence of such preformed intracellular poisons as an element in typhoid toxemia has not been proved, and is not absolutely necessary for the explanation of the phenomena occurring in this disease. However, the diarrhea, the hemorrhagic lesions, and the protracted symptoms following the injection of extracts and filtrates of the bacillus, differing so strikingly from the acute illness with rapid death or equally rapid recovery resulting from anaphylatoxin poisoning, would justify the assumption that poisons of this nature may still play a part in the disease, adding an additional specific characteristic to the clinical picture. As stated before, however, it is not improbable that all these characteristics may represent merely a more protracted or subacute state of anaphylatoxin toxemia. The experiments with autolysates, although none of them were fatal in their results upon guinea pigs, have sufficiently indicated that poisons comparable to anaphylatoxins can be formed in this way. This would indicate that a reaction of proteolysis, which may take place slowly by autolysis, is hastened by the action of complement, and its velocity is still further augmented by the increase, within certain limits, of the sensitization,—a conception which would attribute to the combined action of complement and sensitizer a function not incomparable to that of the bodies spoken of as catalytic agents.


2021 ◽  
pp. 54-59
Author(s):  
L. R. Yurenkova ◽  
O. A. Yakovuk ◽  
I. V. Morozov

The article provides examples of how the device known as the «angle reflector» a few decades ago has been increasingly used in various fields of science and technology in recent years. Angle reflectors are designed to change (reflect) optical and radar rays in the direction, opposite to the original direction. At present, angle reflectors are widely used to ensure the safety of road transport on dangerous road sections. Radio wave reflectors have the same design as optical ones; therefore, in radio detection and location, angle reflectors are used to send warning signals to ship radars on bridge supports, beacons and buoys. Modern angle reflectors attached to meteorological probes allow determining the direction and speed of the wind at high altitude, which is especially important in the study of the outer space. In recent years, devices have been developed to improve the accuracy of radar stations calibration. The examples of graphical calculation of angle reflectors presented in the article clearly demonstrate the primary role of geometry in the design activity of an engineer. The graphical calculation is based on the theoretical positions of projective geometry. The design and calculation of optical systems is carried out by the graphoanalytic method, since only with a combination of graphical and analytical methods it is possible to accurately calculate the course of a light beam, laser, or radio wave and thereby determine the design parameters of the devices. The article focuses on a graphical method for calculating two types of angle reflectors using orthogonal projection, due to which modern engineers will be able to create more up-to-date designs of optical systems with a wide range of applications.


2018 ◽  
Vol 5 (2) ◽  
pp. 107-114
Author(s):  
Anna Hurova

In article it is analyzed action in the space of the principle of prohibition of the use of force and threats (jus contra bellum). Also it is researched application of Geneva Law to space conflicts (jus in bello) and it correlations with another hard and soft norms of international law in the light of protection of space environment such as Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques, Declaration of the United Nations Conference on the Human Environment 1972, Rio Declaration on Environment and Development 1992 etc. Beside this it is used practice of International Court of Justice for argumentation of positions and conclusions. Since space objects management is done remotely with help of software, author draw parallels between legal regulation of international conflicts in outer space and cyber space. Furthermore, it is researched specific features of application the principle of proportionality in international space armed conflicts with the aim of protection environment of space and Earth.


2021 ◽  
Author(s):  
Zbigniew Jelonek ◽  
Monika Fabiańska ◽  
Iwona Jelonek

Abstract Thirty-one batches of commercial charcoal from various regions of Poland and Germany were tested for the presence of twenty toxic elements and polycyclic aromatic hydrocarbons (PAHs) using gas chromatography - mass spectrometry (GC-MS). Elements that are toxic to living organisms were determined using atomic absorption spectroscopy (AAS). They were classified as elements representing a very high degree of hazard (As, Cd, Cu, Hg, and Pb), high degree of hazard (Zn, Ba, Cr, Mn, and Mo), moderate degree of hazard (Co, Ni, Sn, and Te), and a low degree of hazard for living organisms and the environment (Ag, Bi, Ce, Se, Sr, and Zr). When it comes to the most toxic elements, the highest concentration in the whole tested material was recorded for Cu. In addition, considerable amounts of Ba, Mn, and Sr, i.e., elements representing high or moderate degree of hazard, were found in the tested charcoals. Moreover, all charcoals contained a wide range of PAHs, from naphthalene to benzo(ghi)perylene, with concentrations in the range between 12.55 and 3554.11 ng/g of charcoal. In total, 25 unsubstituted PAHs were identified in the charcoal extracts. PAHs distributions were dominated by 5-ring PAHs. The results indicate the high carcinogenicity with ∑PAHcarc/∑PAHtot close to 1, as well as high TEQ and MEQ values. Thus, prolonged exposure to charcoal and charcoal dust might cause serious health problems. This applies to employees actively involved in the production and transport of charcoal, and, to a lesser extent, also to users of this fuel.


2020 ◽  
Vol 3 ◽  
Author(s):  
Mahulena Hofmann ◽  
Federico Bergamasco

Non-technical abstract The new forms of the use of outer space, such as space resources activities, not only will provide a vital contribution to research and industry, but could also entail a negative impact to the space environment. The present article aims at discussing from a legal perspective crucial problems such as how we shall ensure that the entities active in the area of space resources take environmental concerns into account, how we shall ensure that they utilize the best possible and least invasive technology and whether they should restore the ‘mining’ area when finishing their tasks.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 291 ◽  
Author(s):  
Thijs A. Peters ◽  
Marit Stange ◽  
Rune Bredesen

We report on the effect of butane and butylene on hydrogen permeation through thin state-of-the-art Pd–Ag alloy membranes. A wide range of operating conditions, such as temperature (200–450 °C) and H2/butylene (or butane) ratio (0.5–3), on the flux-reducing tendency were investigated. In addition, the behavior of membrane performance during prolonged exposure to butylene was evaluated. In the presence of butane, the flux-reducing tendency was found to be limited up to the maximum temperature investigated, 450 °C. Compared to butane, the flux-reducing tendency in the presence of butylene was severe. At 400 °C and 20% butylene, the flux decreases by ~85% after 3 h of exposure but depends on temperature and the H2/butylene ratio. In terms of operating temperature, an optimal performance was found at 250–300 °C with respect to obtaining the highest absolute hydrogen flux in the presence of butylene. At lower temperatures, the competitive adsorption of butylene over hydrogen accounts for a large initial flux penalty.


Author(s):  
Hui Chieh Teoh ◽  
Katrina Pui Yee Shak

The constant depictions of contact with extraterrestrial life and their constant basic presence in science fiction shows the deep human desire for connection and transcendence with other life forms. In reality, continuous efforts on the search for aliens are being made by renown not-for-profit research organization such as the Search for Extraterrestrial Intelligence (SETI) since 1984. Over the years, plenty of detected signals were dismissed as noise from transmitters on Earth or orbiting satellites but one – the “Wow!” signal. However, artificial signals from extraterrestrial sources could be the key to detecting extraterrestrial intelligence. Apart from passively searching, some are doing active SETI, or known as METI (Messaging Extraterrestrial Intelligence), where humans create and transmit interstellar messages to aliens instead of waiting for theirs. Substantial effort in many areas – awareness, time, technological advancement, techniques – would be necessary to increase the probability of locating outer space intelligence.


1969 ◽  
Vol 63 (2) ◽  
pp. 197-210 ◽  
Author(s):  
R. Cargill Hall

The requirement for international standards for rescue and return of distressed astronauts rapidly assumed importance in the first years of the space age, paralleling development of the technology necessary to sustain man in outer space and to permit re-entry of spacecraft through the earth’s atmosphere. The need increased in the early 1960’s when both the United States and the Soviet Union announced inauguration of space flight programs to send men to the moon and return them to earth. It was recognized that, in the continued absence of any firm international consensus on this subject, international friction could be caused by disagreement over procedure to be followed, the nature and extent of states’ obligations, or by differences in interpreting or applying legal principles in the event earth or space rescue and return operations became necessary. These conditions (possible unintentional misunderstanding during manned flight emergencies, swift developments in astronautical science and technology that made manned space flight a reality, and the importance of astronauts in terms of national prestige and subsequent status as “envoys of mankind”) combined to encourage international agreement upon standards for rescue and return by way of direct discussion among states, informal agreement, and, ultimately, conclusion of formal conventions governing this activity; and they discouraged reliance by nations upon principles or practices derived from custom and precedent.


Sign in / Sign up

Export Citation Format

Share Document