scholarly journals Employment of Micro- and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites

Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 53
Author(s):  
Marco Freschi ◽  
Matteo Di Virgilio ◽  
Gabriele Zanardi ◽  
Marco Mariani ◽  
Nora Lecis ◽  
...  

Friction and wear are responsible for around 23% of the energy consumption in transportation, manufacturing, power generation, and residential sectors. Employed components are exposed to a wide range of operational conditions, therefore a suitable material design is fundamental to decreasing tribological issues, energy consumption, costs, and environmental impact. This study aims to analyze the effect of different solid lubricants on the suitability of copper matrix composites (CuMCs) as a potential solution to reduce the depletion of sliding electrical contacts working under extreme conditions. CuMCs samples are produced by cold-pressing and sintering to merge a high electrical conductivity with the lubricant effect supplied by different species, namely tungsten disulfide micro-powder (WS2), inorganic fullerene-like (IF) tungsten disulfide nanoparticles, and graphene nanoplatelets (GNP). The crystalline structure of the pristine and composite materials is characterized via XRD. The electrical tests show a small decrease of conductivity compared to pure copper, due to the insulating effect of WS2; however, the measured values are still adequate for conduction purposes. Micro-scratch and wear tests highlight the positive effect of the combination of WS2 structures and GNP. The friction coefficient reduction leads to the possibility of extending the lifetime of the components.

2010 ◽  
Vol 150-151 ◽  
pp. 979-983
Author(s):  
Run Guo Zheng ◽  
Zai Ji Zhan ◽  
Bo Liang ◽  
Wen Kui Wang

Copper matrix composites with different La2O3 content were fabricated by powder metallurgy method. Sliding wear behavior of the Cu-La2O3 composites was carried out by using a pin-on-disk wear tester under dry sliding conditions at a constant sliding speed of 20 m/s. The results showed that the wear rate of the composites was significantly lower than that of pure copper. The friction coefficient and wear rate of Cu matrix composites decreased significantly by incorporation of La2O3 particles. For determination of the wear mechanisms of the composites, the worn surfaces were examined using scanning electron microscopy. It is found that the main wear mechanisms of the sintered copper-La2O3 composites were oxidation wear and adhesive wear.


2021 ◽  
Vol 11 ◽  
pp. 1469-1479 ◽  
Author(s):  
Xiuhua Guo ◽  
Yubo Yang ◽  
Kexing Song ◽  
Li Shaolin ◽  
Feng Jiang ◽  
...  

Author(s):  
Ilayaraja Karuppiah ◽  
Ranjith Kumar Poovaraj ◽  
Anandakrishnan Veeramani ◽  
Sathish Shanmugam ◽  
Ravichandran Manickam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document