scholarly journals High Mechanical Performance Based on Physically Linked Double Network (DN) Hydrogels

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3333 ◽  
Author(s):  
Niu ◽  
Zhang ◽  
Shen ◽  
Sheng ◽  
Fu ◽  
...  

A new design strategy was proposed to improve the mechanical performance of double network (DN) hydrogels by introducing polyhydroxy compounds into the DN structure and form a physically linked double network through the interaction of hydrogen bonding. Herein, agar/poly(acrylic acid)/hydroxyethyl cellulose composite hydrogels could be prepared by a simple one-pot method. The resulting hydrogels exhibit highly mechanical properties and excellent recoverability, which have potential applications in biomedical fields.

2020 ◽  
Vol 298 (12) ◽  
pp. 1699-1713
Author(s):  
Solomiia Borova ◽  
Victor Tokarev ◽  
Philipp Stahlhut ◽  
Robert Luxenhofer

Abstract Hydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.


Author(s):  
Ya Liu ◽  
Li Wang ◽  
Hongsheng Lu ◽  
Zhiyu Huang

The organohydrogel PDLH was prepared by one-pot polymerization. Due to stiff organogel domains and the highly elastic DN hydrogel matrix, PDLH shows higher mechanical properties than SN organohydrogel and exhibits excellent shape memory behavior.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Jun Wang ◽  
Abedalwafa Mohammed ◽  
Chao-Jing Li ◽  
Lu Wang

The present study was designed to improve the mechanical performance of a small-diameter vascular prosthesis made from a flexible membrane of poly(ε-caprolactone) (PCL). PCL reinforcement was achieved by embedding a tubular fabric knitted from polyethylene terephthalate (PET) yarns within the freeze-dried composite structure. The knitting density of PET fabric influenced the mechanical properties of the new vascular graft. Results showed that the composite prototype has good mechanical properties, water permeability, elastic recovery, and suture retention strength. Increases in loop density increased compressive strength and suture retention strength and decreased elastic recovery. The new composite prototype vascular graft has promising potential applications in clinics because of its excellent mechanical properties.


2020 ◽  
Author(s):  
Solomiia Borova ◽  
Philipp Stahlhut ◽  
Victor Tokarev ◽  
Robert Luxenhofer

<p>Hydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.</p>


2020 ◽  
Author(s):  
Solomiia Borova ◽  
Philipp Stahlhut ◽  
Victor Tokarev ◽  
Robert Luxenhofer

<p>Hydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.</p>


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 277
Author(s):  
Kamol Dey ◽  
Silvia Agnelli ◽  
Elisa Borsani ◽  
Luciana Sartore

The mechanical milieu of the extracellular matrix (ECM) plays a key role in modulating the cellular responses. The native ECM exhibits viscoelasticity with stress relaxation behavior. Here, we reported the preparation of degradation-mediated stress relaxing semi-interpenetrating (semi-IPN) polymeric networks of hydroxyethyl cellulose in the crosslinked gelatin-polyethylene glycol (PEG) architecture, leveraging a newly developed synthesis protocol which successively includes one-pot gelation under physiological conditions, freeze-drying and a post-curing process. Fourier transform infrared (FTIR) confirmed the formation of the semi-IPN blend mixture. A surface morphology analysis revealed an open pore porous structure with a compact skin on the surface. The hydrogel showed a high water-absorption ability (720.00 ± 32.0%) indicating the ability of retaining a hydrophilic nature even after covalent crosslinking with functionalized PEG. Detailed mechanical properties such as tensile, compressive, cyclic compression and stress relaxation tests were conducted at different intervals over 28 days of hydrolytic degradation. Overall, the collective mechanical properties of the hydrogel resembled the mechanics of cartilage tissue. The rate of stress relaxation gradually increased with an increasing swelling ratio. Hydrolytic degradation led to a marked increase in the percentage dissipation energy and stress relaxation response, indicating the degradation-dependent viscoelasticity of the hydrogel. Strikingly, the hydrogel maintained the structural stability even after degrading two-thirds of its initial mass after a month-long hydrolytic degradation. This study demonstrates that this semi-IPN G-PEG-HEC hydrogel possesses bright prospects as a potential scaffolding material in tissue engineering.


2019 ◽  
Vol 35 (3) ◽  
pp. 371-391
Author(s):  
AKANSHA DIXIT ◽  
◽  
DIBYENDU S. BAG ◽  
DHIRENDRA KUMAR SHARMA ◽  
HARJEET SINGH ◽  
...  

2019 ◽  
Vol 70 (10) ◽  
pp. 3469-3472

Weldability involves two aspects: welding behavior of components and safety in operation. The two aspects will be reduced to the mechanical characteristics of the elements and to the chemical composition. In the case of steel reinforcing rebar’s, it is reduces to the percentage of Cech(carbon equivalent) and to the mechanical characteristics: the yielding limit, the ultimate limit, and the elongations which after that represent the ductility class in which the re-bars is framed. The paper will present some types of steel reinforcing rebar’s with its mechanical characteristics and the welding behavior of those elements. In the current work, process-related behavior of welded reinforcement, joint local and global mechanical properties, and their correlation with behavior of normal reinforcement and also the mechanical performance resulted in this type of joints. Keywords: welding behavior, ultimate limit, reinforcing rebar’s


Sign in / Sign up

Export Citation Format

Share Document