scholarly journals Thermal Stability and Kinetics of Formation of Magnesium Oxychloride Phase 3Mg(OH)2∙MgCl2∙8H2O

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 767 ◽  
Author(s):  
Michal Lojka ◽  
Ondřej Jankovský ◽  
Adéla Jiříčková ◽  
Anna-Marie Lauermannová ◽  
Filip Antončík ◽  
...  

In this paper, magnesium oxychloride cement with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (MOC 3-1-8) was prepared and characterized. The phase composition and kinetics of formation were studied by X-ray diffraction (XRD) and Rietveld analysis of obtained diffractograms. The chemical composition was analyzed using X-ray fluorescence (XRF) and energy dispersive spectroscopy (EDS). Furthermore, scanning electron microscopy (SEM) was used to study morphology, and Fourier Transform Infrared (FT-IR) spectroscopy was also used for the analysis of the prepared sample. In addition, thermal stability was tested using simultaneous thermal analysis (STA) combined with mass spectroscopy (MS). The obtained data gave evidence of the fast formation of MOC 3-1-8, which started to precipitate rapidly. As the length of the time of ripening increased, the amount of MgO decreased, while the amount of MOC 3-1-8 increased. The fast formation of the MOC 3-1-8 phase at an ambient temperature is important for its application in the production of low-energy construction materials, which corresponds with the challenges of a sustainable building industry.

2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3163
Author(s):  
Filip Antončík ◽  
David Sedmidubský ◽  
Adéla Jiříčková ◽  
Michal Lojka ◽  
Tomáš Hlásek ◽  
...  

Y2BaCuO5 often occurs as an accompanying phase of the well-known high-temperature superconductor YBa2Cu3O7 (also known as YBCO). Y2BaCuO5, easily identifiable due to its characteristic green coloration, is often referred to as ‘green phase’ or ‘Y-211’. In this contribution, Y2BaCuO5 phase was studied in detail with a focus on its thermal and thermodynamic properties. Energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed in the study of sample’s morphology and chemical composition. XRD data were further analyzed and lattice parameters refined by Rietveld analysis. Simultaneous thermal analysis was employed to study thermal stability. Particle size distribution was analyzed by laser diffraction. Finally, thermodynamic properties, namely heat capacity and relative enthalpy, were measured by drop calorimetry, differential scanning calorimetry (DSC), and physical properties measurement system (PPMS). Enthalpy of formation was assessed from ab-initio DFT calculations.


2019 ◽  
Vol 2 (2) ◽  
pp. 10
Author(s):  
Sutarno Sutarno ◽  
Arief Budyantoro

Faujasite was hydrothermally synthesized from fly ash at 100oC in alkaline solution by reflux with 5M HCl and fusion with NaOH (weight ratio of NaOH/fly ash = 1.2) pretreatments. Kinetics of faujasite formation was performed by variation of hydrothermal time (0-120 hours). Thermal stability of faujasite from fly ash was tested at 400-900oC and was compared with commercial zeolite Y. The solid products were characterized by X-ray diffraction method. Results showed that faujasite was formed through dissolution of fly ash components such as quartz, mullite and amorphous aluminosilicates (0-3 hours) followed by crystallization to form faujasite (6-48 hours). In longer hydrothermal time (48-72 hours), faujasite transformed into zeolite P and completely formed hydroxysodalite after 120 hours. X-ray diffraction pattern showed that thermal stability of faujasite from fly ash was relatively lower than that of commercial zeolite Y. Faujasite from fly ash transformed into amorphous phase at 800oC whereas commercial zeolite Y transformed into amorphous phase at 900oC.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Patricia Kalita ◽  
Justin Brown ◽  
Paul Specht ◽  
Seth Root ◽  
Melanie White ◽  
...  

2008 ◽  
Vol 104 (4) ◽  
pp. 043520 ◽  
Author(s):  
G. B. González ◽  
J. S. Okasinski ◽  
T. O. Mason ◽  
T. Buslaps ◽  
V. Honkimäki

2010 ◽  
Vol 146-147 ◽  
pp. 1142-1146
Author(s):  
Yong Zheng Fang ◽  
Jia Yue Xu ◽  
Zhang Yong Wang ◽  
Hui Chun Qian

DSC measurements have been carried out for the as-quenched xNa2O- (15-x)Li2O-4B2O3-11Al2O3-5BaO-65P2O5 (x=0,3.75,7.5,11.25 and 15 mol%) glasses with different particle size. Two crystallization peaks appear on the DSC curves for sample sized 90-110μm. The presence of two crystallization peaks is due to different crystallization mechanisms, surface and bulk (internal) crystallization. The X-ray diffraction measurements are also employed to investigate the crystallization of glasses. The results show that bulk crystallization is difficult to occur in the studied phosphate glasses. The effect of mixed alkali on glass thermal stability is also studied in this paper. The surface and bulk crystallization active energies are calculated according to Kissinger equation.


2020 ◽  
Vol 10 (7) ◽  
pp. 2254 ◽  
Author(s):  
Ondřej Jankovský ◽  
Michal Lojka ◽  
Anna-Marie Lauermannová ◽  
Filip Antončík ◽  
Milena Pavlíková ◽  
...  

In this work, carbon dioxide uptake by magnesium oxychloride cement (MOC) based materials is described. Both thermodynamically stable magnesium oxychloride phases with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (Phase 3) and 5Mg(OH)2∙MgCl2∙8H2O (Phase 5) were prepared. X-ray diffraction (XRD) measurements were performed to confirm the purity of the studied phases after 7, 50, 100, 150, 200, and 250 days. Due to carbonation, chlorartinite was formed on the surface of the examined samples. The Rietveld analysis was performed to calculate the phase composition and evaluate the kinetics of carbonation. The SEM micrographs of the sample surfaces were compared with those of the bulk to prove XRD results. Both MOC phases exhibited fast mineral carbonation and high maximum theoretical values of CO2 uptake capacity. The materials based on MOC cement can thus find use in applications where a higher concentration of CO2 in the environment is expected (e.g., in flooring systems and wall panels), where they can partially mitigate the harmful effects of CO2 on indoor air quality and contribute to the sustainability of the construction industry by means of reducing the carbon footprints of alternative building materials and reducing CO2 concentrations in the environment overall.


1997 ◽  
Vol 134 (2) ◽  
pp. 319-325 ◽  
Author(s):  
Koji Yamada ◽  
Hiroshi Sera ◽  
Shigeko Sawada ◽  
Hironobu Tada ◽  
Tsutomu Okuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document