scholarly journals Evaluation of Laboratory Methods of Determination of SBS Content in Polymer-Modified Bitumens

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5237
Author(s):  
Maria Ratajczak ◽  
Artur Wilmański

The article deals with the issue of determination of the content of SBS (Styrene-Butadiene-Styrene) in polymer-modified bitumens (PMBs). The effect of SBS copolymer on the physical and rheological properties of bitumens has been thoroughly investigated and widely described in the literature. Condition surveys of structures and evaluation of the properties of materials used at construction sites have become a huge challenge for construction engineering. Determination of the content of SBS modifier in various building materials (asphalt mixtures and bituminous waterproofing compounds) is a good example in this respect. Based on the laboratory tests, mid-infrared spectroscopy was found to be the most effective analytical method. It can be used for easy detection of the presence of SBS in a modified bitumen. However, quantitative analysis is an issue that calls for research. Currently, there are no standard guidelines, whether national or European, that would regulate the method of testing. Three test methods were assessed in this study: the AASHTO T302–15 standard method and two Australian methods described in codes of practice (T521 and Q350) developed by the local authorities, which define a standard way of determining the amount of SBS in polymer-modified bitumens. The tests were carried out on standard controls and samples sourced from the industry. The above-mentioned test methods were assessed in terms of accuracy of determination, reliability of results obtained on the industrial samples, level of complexity of the test procedure, sample preparation techniques and the type of the required reagents.

1985 ◽  
Vol 107 (2) ◽  
pp. 170-175
Author(s):  
W. C. Thomas ◽  
A. G. Dawson ◽  
D. Waksman

Measurements of the maximum temperatures reached by solar-energy-absorbing surfaces provide a useful method for detecting possible degradation in the optical and heat transfer properties of materials used in collectors. This investigation shows that a method based on integrating the absorber temperature rise over ambient and solar irradiation on a daily basis has advantages over alternative test methods based on steady-state measurements of either absorber stagnation temperature or collector thermal efficiency. A nonsteady-state analytical model is developed and used to evaluate the sensitivity of the proposed test method to material degradation and environmental effects. Outdoor data are presented to validate the analytical model and depict typical results that can be expected using the test procedure.


2019 ◽  
Vol 271 ◽  
pp. 03008
Author(s):  
MM Tariq Morshed ◽  
Mohammad Nazmul Hassan ◽  
Zahid Hossain

For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. The main goal of this study is to recommend alternative test method(s), which can possibly be pursued by using, a Dynamic Shear Rheometer (DSR). Thus, Multiple Stress Creep and Recovery (MSCR), ER-DSR, Frequency Sweep, and Binder Yield Energy Test (BYET) are being explored to find their effectiveness. Three PG binders (PG 64-22, PG 70-22 and PG 76-22) have been selected for this investigation. These binders have been prepared with styrene-butadiene-styrene (SBS) polymer, PPA, or a combination of both. Further, chemical tests such as SARA (Saturate, Aromatic, Resin, and Asphaltene) analysis and FTIR (Fourier-transform Infrared spectroscopy) are also being explored to fulfill the objectives. Preliminary findings suggest that the PG Plus tests deem to be obsolete. Also, a single test procedure is not sufficient to identify the presence and effectiveness of modifiers in the PG binders.


2019 ◽  
Vol 85 (7) ◽  
pp. 41-49
Author(s):  
Yaroslava V. Sulimina ◽  
Nikolay O. Yakovlev ◽  
Vladimir S. Erasov ◽  
Aleksey Yu. Ampilogov ◽  
Andrey N. Polyakov ◽  
...  

The special features of various bearing deformation measurements for pin-type bearing tests of metallic materials are considered along with their impact on the magnitude of the «bearing elastic modulus» and bearing stress. These bearing test methods are present in ASTM and various institutional standards, though no state standard (GOST, GOST R) is currently available for bearing test method of metallic materials. Analysis of additional deformations which arise in determining the degree of hole bearing deformation is carried out. A set of sources of additional deformations is shown to be characteristic for each test procedure and is attributed to the design features of the device, the site and a way of mounting the extensometer. Additional deformations can be both tensile and compressive. It is shown that the impact of additional deformations on the «bearing elastic modulus» is limited to 14% for different procedures. No difference between the methods is revealed with regard to determination of the strength characteristics. At the same time the dispersion decreases with increase in plastic deformation and for bearing deformation about 4% the variation coefficient for all methods is no more than 1%. Advantages and shortcomings of the bearing test methods which affect the reproducibility of the results are considered. The effect of the specimen geometry on the bearing characteristics is considered. It is shown that increase both in the distance from the edge of the bearing specimen to the center of the hole for 1163T, VT6ch, 30KhGSA alloys and residual bearing deformation up to 6%, increase bearing strength characteristics.


2004 ◽  
Vol 92 (12) ◽  
Author(s):  
Jamshed H. Zaidi ◽  
M. Arif ◽  
I. Fatima

SummarySamples of sand, stone and manufactured building materials collected from Karachi area have been analyzed for the primordial natural radionuclides


2012 ◽  
Vol 85 (4) ◽  
pp. 661-668
Author(s):  
Ana María Rodríguez-Alloza ◽  
Juan Gallego-Medina ◽  
José María Bermejo-Muñoz ◽  
Leticia Saiz-Rodríguez

ABSTRACT The objective of this article is to study the validity of the test methods that are currently used to determine the fiber content in samples of rubber powder made from end-of-life tires: CEN/TS 14 243, ASTM D 5603-01, and XP T 47–758. For this purpose, rubber powder samples contaminated with one weight percent (wt%) of fiber were prepared and submitted to sieve analyses, with the weight of the sample and sieving time as the variable parameters. The materials used were rubber powder without fibers and polyester fibers from recycled waste tires, both generated during the shredding of the tires. It has been observed that the procedure of determining fiber content based on sieving and extraction of fabric balls does not manage to recover more than 41.00% of the fibers contained in the samples. This research demonstrates that even with different sample weights and sieving times, is not possible to recover 100% of the fiber with which the rubber sample was contaminated. This seems to indicate that it is necessary to develop a methodology that differs from the current practice of sieving and extracting fabric balls to correctly determine the fiber content in a sample of rubber powder.


2014 ◽  
Vol 1038 ◽  
pp. 115-120 ◽  
Author(s):  
Christian Goth ◽  
Thomas Kuhn ◽  
Gerald Gion ◽  
Jörg Franke

The adhesion test of metallic structures on MID (Molded Interconnect Devices) parts is an unsolved issue. So far no method really works reliably. The test methods which are conventionally used are the pull-off test and the shear-test. Both show large standard deviation and the reproducibility is not assured. Nordson DAGE has introduced the new micro-material testing system 4000Plus. This device enables a new test method for the determination of the adhesion strength of MID structures using the hot pin pull (hot bump pull) method. Copper pins (tinned or untinned) are heated up with a user defined temperature profile, soldered to a metallized structure on the MID and then removed vertically upward, while the force is recorded. In this contribution investigations with this new test method are presented.


2019 ◽  
Vol 7 (3) ◽  
pp. 335-345
Author(s):  
S. K Singh ◽  
Ngaram S. M. ◽  
Wante H. P.

This research investigated the thermal conductivity of Adobe mixed with Quartz in view of their availability usage as building materials. The thermal conductivities of disc made from Adobe-Quartz chippings were determined. The values of the thermal conductivities obtained were between 0.6Wm-1k-1and 0.9Wm-1k-1, these values could be used to identify Adobe/Quartz as one of the engineering materials used in building construction. Adobe/Quartz was prepared in discs form of the same diameters and thicknesses and was also compressed under the same pressure of 15 atmospheres (100: 0, 95: 5and 80: 20). The average values of the thermal conductivities were between 0.07Wm-1Ҡ-1 and 0.93Wm-1Ҡ-1, for sample contained the proportion of (80:20) and the sample of ratio (95:5). MATLAB 7.0 and EXCEL software were used in the various computations, especially in determining dT/dt, Root mean square error (RMSE), Curve fittings parameter and the correlation coefficient, R2. An average correlation coefficient of 0.78 was existed between Adobe-Quartz ratio and thermal conductivity. The equation, y = -0.11x2 + 0.01x + 1.03 is the general equation that can be used for the prediction of average thermal conductivity at various ratios. Where y is the average thermal conductivity and x here signifies the ratios. This also indicates that compacted Adobe-Quartz of low density will be a suitable thermal insulator when used as aggregates in walls.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Willis Otieno Gor Odongo ◽  
Margaret Chege ◽  
Nadir Hashim ◽  
Shinji Tokonami ◽  
Kranrod Chutima ◽  
...  

The areas around Homa and Ruri hills in Homa Bay County in Kenya are associated with high background radiation levels. The activity concentration of the natural radionuclides (226Ra, 232Th, and 40K) in earthen building materials used in the areas of Homa and Ruri hills has been measured using a NaI (Tl) detector in this work. The measured values of radioactivity concentrations are used to estimate the associated radiological risk. The earthen building material samples from Ruri registered relatively high 232Th concentration values averaging 1094 ± 55 Bq/kg, nearly three times those of the samples from Homa. 226Ra level was not significantly different in both regions with Homa reporting 129 ± 10 Bq/kg and Ruri 111 ± 6 Bq/kg. 40K was however higher in the samples from Homa by an approximate factor of 2 relative to those from Ruri where the activity concentration was 489 ± 24 Bq/kg. The radium equivalents for 226Ra, 232Th, and 40K in the samples from Ruri were 111 ± 9, 1564 ± 125, and 38 ± 3 Bq/kg, while in Homa, the values were 129 ± 10, 570 ± 46, and 69 ± 5 Bq/kg, respectively. The calculated value of total radium equivalent in Ruri was 1713 ± 137 Bq/kg which was two times higher than that of Homa. 232Th contributed about 74% and 91% to the total radium equivalent in Homa and Ruri, respectively; thus, it was the one with the largest contribution to radiation exposure in both regions. The average indoor annual effective dose rates were 1.74 ± 0.14 and 3.78 ± 0.30 mSv/y in Homa and Ruri, respectively, both of which were above the recommended safety limit of 1 mSv/y.


Sign in / Sign up

Export Citation Format

Share Document