scholarly journals Investigation of Welds and Heat Affected Zones in Weld Surfacing Steel Plates Taking into Account the Bead Sequence

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5666
Author(s):  
Miloš Mičian ◽  
Jerzy Winczek ◽  
Marek Gucwa ◽  
Radoslav Koňár ◽  
Miloslav Málek ◽  
...  

In this paper, the experimental investigation results of the bead sequence input on geometry, structure, and hardness of surfaced layers after multi-pass weld surfacing are analyzed. Three S355 steel plates surfaced by GMAW (Gas Metal Arc Welding) were tested with three different combinations of six beads. The geometric, structural, and hardness analysis was carried out in the cross-section of the plates in the middle of the welded layers. The dimensions of padded layers, fusion and heat-affected zone, as well as the individual padded weld were evaluated. On the basis of metallographic samples, qualitative and quantitative structure analysis was performed. Hardness measurements in surfacing welds and heat-affected zones in the tested cross-sections of the surfacing layers were carried out. A comparative analysis of structure and hardness, taking into account the thermal implications of the bead sequence, allowed for the formulation of conclusions. Comparative studies have shown differences in properties between heat-affected zones (HAZ) for individual surfacing sequences. These differences were mainly in the dimensions of the surfacing layers, the share of structural components, as well as the uniformity of hardness distributions. Finally, the most favorable sequence in terms of structure and hardness distribution, maximum hardness, and range of hardness has been indicated.

2012 ◽  
Vol 557-559 ◽  
pp. 1275-1280 ◽  
Author(s):  
Teerayut Kanchanasangtong ◽  
Supachai Surapunt

The purpose of this research is to study the effect of heat input on microstructure and hardness of SKD 61 hot work tool steel by using Gas Metal Arc Welding (GMAW) process. The specimens made of SKD 61 steel plates were austenized and oil-quenched to room temperature, then they were double tempered. Base on identical welding specification procedure (WPS), the specimens were automatically welded by GMAW machine. The consumable copper coated-solid wire electrode was used for surfacing in the GMAW process. The microstructures at the HAZ of specimens for all conditions were composed mainly of martensite with some retained austenite in the dendritic segregation pattern. With the higher heat input resulted in increasing in hardness, which resulted from transformation of retained austenite to martensite.


2020 ◽  
Vol 99 (11) ◽  
pp. 281s-294s
Author(s):  
P. P. G. RIBEIRO ◽  
◽  
P. D. C. ASSUNÇÃO ◽  
E. M. BRAGA ◽  
R. A. RIBEIRO ◽  
...  

The hot-wire gas metal arc welding (HW-GMAW) process is widely used to increase the melting rate of a secondary wire through Joule heating without significantly increasing the total heat input to the substrate. Because there is limit-ed knowledge regarding the associated arc dynamics and its influence on bead geometry, the present study considers how these are affected by the hot-wire polarity (negative or positive), hot-wire feed rate, and hot-wire orientation using a two-factor full factorial experiment with three replicates. During welding, high-speed imaging synchronized with current and voltage acquisition to study the arc dynamics. After this, each replicated weld was cut into three cross sections, which were examined by standard metallography. The preliminary results suggest that the arc was stable within the range of process parameters studied. The arc polarity played a role on arc position relative to the hot wire, with a decrease in penetration depth observed when the arc was attracted to the hot wire.


2011 ◽  
Vol 337 ◽  
pp. 511-516 ◽  
Author(s):  
Nathan Larkin ◽  
Zeng Xi Pan ◽  
Stephen van Duin ◽  
Mark Callaghan ◽  
Hui Jun Li ◽  
...  

The feasibility of using Tandem Gas Metal Arc Welding (T-GMAW) to produce full penetration butt welds in 5mm ship panel steel plates has been assessed and compared to the current Submerged Arc Welding (SAW) process. Experiments conducted show that the T-GMAW process is feasible and demonstrated a significant improvement over the SAW process in several areas including higher travel speed, a reduction in filler material, significantly lower post weld distortion, and a smaller Heat Affected Zone (HAZ), while maintaining similar microstructure and mechanical properties in the weld metal and HAZ.


Author(s):  
D Pacek ◽  
P Kolodziejczak ◽  
K Grzelak ◽  
J Torzewski ◽  
P Podgorzak

Despite the intensive development of plastics and composite materials in the case of armours employed to protect vehicles, armour steel remains a material commonly and effectively used. This is especially evident in the base armour of armoured vehicles, where the body is made of welded armour steel plates. However, the area of joining both the weld and the heat affected zone are sensitive areas with the reduced protective capability. In the case of laser welding in comparison with methods such as shielded metal arc welding and gas metal arc welding, it is possible to narrow down the above mentioned areas. The paper presents the results of research on the protective capability of welded zone of armour steel plates with a hardness of 500 HB. In the first part of the work, in order to select the proper parameters for the bonding process, different connection variants were made and their microstructure and selected mechanical properties were analysed. After selecting the best variant of the welding process, samples (200 mm × 200 mm) consisting of two welded plates with dimensions 100 mm × 200 mm were made for testing. The thickness of the plates was selected in such a way that in the areas outside the bonding zone, the lack of complete perforation by the projectiles used in the tests is guaranteed. The samples were shot at the weld location and at different distances from the weld to verify, for the chosen method of joining steel plates, if the welded armour loses its protective capability and, possibly, how wide this area may be.


2015 ◽  
Vol 1766 ◽  
pp. 37-43
Author(s):  
Z.L. López Bustos ◽  
F.J. García Vázquez ◽  
G.Y. Pérez Medina ◽  
B. Vargas Arista ◽  
V.H. López Cortez

ABSTRACTThe wear phenomenon may occur for a variety of work conditions in the material. It causes losses in terms of time and costs in the components which are used for heavy machinery due to its re-pair or even replacement. It is important to select suitable materials that exhibit high-quality weldability and resistance to abrasive wear such as the high strength low alloy (HSLA) steel grade 950A. Therefore, it is necessary to study the wear behavior of this kind of steel after components are joined by multi-pass gas metal arc welding (GMAW) process, specifically on the heat affected zone (HAZ). The aim of this research was to evaluate wear resistance by pin on disc test and hardness on heat affected zone of HSLA steel plates with thickness of 14 mm joined by using GMAW process varying different parameters as wire feed speed and voltage. The influence of microstructural features such as carbide precipitation on wear behavior and hardness was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The results show that microstructure is modified by the heat input of the welding process, affecting the material properties and causing more susceptibility to wear on the welded area.


Sign in / Sign up

Export Citation Format

Share Document