scholarly journals High Power Impulse Magnetron Sputtering of In2O3/Sn Cold Sprayed Composite Target

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1228
Author(s):  
Marcin Winnicki ◽  
Artur Wiatrowski ◽  
Michał Mazur

High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of 900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%, (iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF capacitor bank from external high voltage power supply worked as a power supply for an unbalanced magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after 300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.

Author(s):  
E.E. Bowles ◽  
S. Chapelle ◽  
G.X. Ferguson ◽  
D.S. Furuno ◽  
M. Marietta

2010 ◽  
Vol 38 (10) ◽  
pp. 2604-2610 ◽  
Author(s):  
Alex Pokryvailo ◽  
Costel Carp ◽  
Clifford Scapellati

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjie Zhao ◽  
Yuanyuan Jiang ◽  
Jianchao Wu ◽  
Yonghui Huang ◽  
Yan Zhu ◽  
...  

With the rapid development of the world’s aerospace technologies, a high-power and high-reliability space high-voltage power supply is significantly required by new generation of applications, including high-power electric propulsion, space welding, deep space exploration, and space solar power stations. However, it is quite difficult for space power supplies to directly achieve high-voltage output from the bus, because of the harshness of the space environment and the performance limitations of existing aerospace-grade electronic components. This paper proposes a high-voltage power supply module design for space welding applications, which outputs 1 kV and 200 W when the input is 100 V. This paper also improves the efficiency of the high-voltage converter with a phase-shifted full-bridge series resonant circuit, then simulates the optimized power module and the electric field distribution of the high-voltage circuit board.


Sign in / Sign up

Export Citation Format

Share Document